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Abstract—Programmable Logic Controllers (PLCs) are the
brains of Industrial Control Systems (ICSes), and thus, are often
targeted by attackers. While many intrusion detection systems
(IDSes) have been adapted to monitor ICS, they cannot detect
malicious network packets from a compromised PLC that con-
form to the network protocol. A domain expert needs to manually
construct IDS rules to model a PLC’s behavior. That approach is
time-consuming and error-prone. Alternatively, machine learning
can infer a PLC’s behavior model from network traces, but that
model may be inaccurate due to a lack of high-quality training
data. This paper presents CoToRu - a toolchain that takes in
the PLC’s code to automatically generate a comprehensive set of
IDS rules. CoToRu comprises (1) an analyzer that parses PLC
code to build a state transition table for modeling the PLC’s
behavior, and (2) a generator that instantiates IDS rules for
detecting deviations in PLC behavior. The generated rules can
be imported into Zeek IDS to detect various attacks. We apply
CoToRu to a power grid testbed and show that our generated
rules provide superior performance compared to existing IDSes,
including those based on statistical analysis, invariant-checking,
and machine learning. Our prototype with CoToRu’s generated
rules provide sub-millisecond detection latency, even for complex
PLC logic.

I. INTRODUCTION

Industrial control systems (ICSes) are complex systems of

cyber and physical devices that play key roles in critical

infrastructures such as power grids and water treatment plants.

As a result, they have increasingly become the targets of

cyber and physical attacks [1]. High-profile incidents such

as the Stuxnet attack [2] have targeted Programmable Logic

Controllers (PLCs), which represent the brain of the ICS. By

gaining a foothold at the PLCs through cyber means and

manipulating their logic, an attacker can send a legitimate-

looking network messages with malicious payloads to create

maximum physical consequences.

As a key security measure, various intrusion detection

systems (IDSes) have been designed to monitor ICS for

malicious activities [3], [4], [5]. Many IDSes in deployment

today base their detection rules on only the communication

aspects of the system. Those rules are derived by modeling

the behavior of selected ICS network protocols and applying

semantic checking or statistical analysis. As a result, they

cannot detect malicious messages that conform to the network

protocol. Other IDSes design their detection rules based on

mining operation logs and can be broadly classified into

two categories: invariants-based, i.e., using manual creation
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of specifications that describe the physical process (e.g., [6],

[7]), and machine learning-based, that learns models of the

system behavior (e.g., [8], [9]). However, manually creating

specifications requires a large amount of effort and domain

expertise. The approach is also error-prone and subject to high

maintenance cost when the ICS is upgraded. Furthermore, as

shown in our experiments, such specifications often need to

be coarse-grained in order to tolerate measurement noise and

reduce false alarms. Hence, they may miss stealthy attacks.

While machine-learning-based approaches require less human

effort and expertise, there is no assurance regarding their

detection accuracy. Our experiments show that although an

LSTM-based IDS solution provides good accuracy for several

types of attacks, it still gives sufficient opportunity for an

advanced attacker to bypass detection and launch a successful

attack. It can also cause many false alarms for a large system.

In this work, we propose CoToRu (Code-To-Rule) — a

toolchain that takes PLC code as input and automatically

generates IDS rules to detect deviations from the PLC op-

erational behavior. CoToRu’s design is feasible because (1)

the PLC code accurately and comprehensively specifies its

operational behavior, and (2) over the years, the ICS industry

has developed standardized approaches to codify the controller

logic as well as their deployment configurations. Our CoToRu

implementation generates rules that can be directly used by

the open-source Zeek IDS [10]. As shown in Fig. 1, CoToRu

consists of two main components:

State Transition Table Generator: This component con-

verts a given PLC code into a state transition table. Each row

of the table is a (key, next state) pair. The table describes the

updating logic of all the PLC variables (i.e., the next state)

when the PLC’s current state satisfies a set of conditions

(i.e., the key). The feasibility of such a modeling approach

is based on the observation that a complex PLC logic can be

decomposed into smaller function-level logic, which can be

represented by a symbolic execution tree with few conditions.

That observation allows us to use a small state transition table

to enumerate all possible combinations of conditions and their

corresponding next state. For larger tables, our framework al-

lows the IDS engine to invoke an external symbolic execution

tree emulator to determine the next state on the fly, which is

left as future work.

Rules Generator: This component automatically instan-

tiates a set of comprehensive IDS rules that use the state

transition table as a reference to check for deviation in PLC
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Fig. 1. An overview of CoToRu

behavior. It also needs two additional inputs for the automa-

tion: (1) the deployment configuration that describes how PLC

local variables are mapped to a PLC’s incoming and outgoing

messages, and (2) the PLC timing profile that describes the

time domain behavior for each type of message. CoToRu

toolchain provides scripts to automatically retrieve both inputs.

Our IDS is then able to detect various types of deviations

caused by the compromised PLC, including: (1) the injection

of unexpected packets, (2) the modification of packets, and (3)

the deletion/delaying of packets. The generated rules can be

directly imported into the open-source Zeek IDS.

We apply CoToRu to a high-fidelity power grid testbed and

show that using CoToRu generated IDS rules can provide

superior performance compared to existing IDS approaches,

including those based on statistical analysis, invariants, and

machine learning.

II. RELATED WORK

In this section, we review various IDS solutions for ICS and

discuss their shortcomings.

Network-based IDS (NIDS). Most NIDSes used for ICS

today can be divided into two categories: protocol-based and

protocol-agnostic. Protocol-based IDSes focus on designing

IDS rules that follow the specifications of ICS protocols

(e.g., [11], [12], [13]). Protocol-agnostic approaches, on the

other hand, are independent of the underlying protocol and

relies on analysis of network characteristics for deviations.

For example, Zhang et al. [14] proposed an IDS that analyzes

the periodicity and telemetry features of SCADA traffic.

More recently, Ren et al. [13] proposed an Edge-Based

Multi-Level Anomaly Detection (EDMAND) solution that

combines both protocol specification modeling and statistical

analysis. (More detail will be covered in Section VI-A1).

NIDSes in this category, however, do not explicitly model the

operational behavior of the ICS. Hence, they cannot detect

malicious network packets from a compromised PLC if the

attack packets conform to the protocol specification and the

traffic statistical pattern.

Operational-aware NIDS. As an enhancement,

operational-aware NIDS uses IDS rules that capture the

operational aspect of an ICS as well. One main approach is

to use machine-learning techniques [8], [15], [16], [17] to

derive models of the operational aspect from normal physical

data logs. For example, the authors in [15] used a Long Short

Term Memory Recurrent Neural Network (LSTM-RNN)

to predict the temporal behavior of time-series data. They

then used CUSUM to identify deviations between the actual

sensor data and the outputs of the trained model to detect

anomalies. Similarly, the authors in [17] used LSTM-RNN

to detect command delay attacks in cyber-physical systems.

While machine-learning techniques can detect some known

and unknown attacks, there is no guarantee of the accuracy,

which is critical for security applications. Furthermore, this

approach is prone to prediction errors due to the quality

of data and the limited number of samples needed to build

the baseline model. Also, it is hard to obtain or generate

comprehensive data (under both normal and attack scenarios)

to train the IDSes for real-world settings.

Another way to model the operational aspect is to rely on

expert knowledge of the physical process. An example model

is physical invariants, which refer to the physical status of the

field devices that must be satisfied in a given state of the sys-

tem. In this direction, Adepu and Mathur [18] proposed an IDS

that checks for sensor and actuator readings that deviate from

the physical specifications. Although an automated framework

is described to generate the invariants, the authors created

invariants manually for a water treatment plant case study. In

some other efforts, Umer et al. [19] and Feng et al. [20] use

historical data logs to mine association rules, which are then

used as invariants. However, useful invariants are hard to mine

due to the complexity of certain event triggers. Since invariants

rely on physical system measurements, which are prone to

noise and delay, careful tuning of the parameters in invariants

(e.g., the threshold values) is required to reduce the rate of

false alarms. As a result, stealthy attacks may go undetected

due to the coarse-grained definitions of the invariants.

III. PROBLEM STATEMENT

This section presents the threat model and formulates the

design considerations that CoToRu aims to satisfy.

Threat Model. PLCs are deployed in ICSes to monitor

and control physical devices. Each PLC contains control logic

that governs how the PLC should behave under specific input

conditions. A PLC also includes firmware that provides driver

support for the control logic.

Our threat model assumes that the attacker manipulates the

PLC control logic or firmware to change the PLC’s runtime

behavior and as a result, disrupts the physical operations. A re-

mote attacker can use social engineering tactics to gain access

to the engineering workstation. The engineering workstation

runs PLC management software (e.g., CoDeSys) and has a

dedicated programming interface that allows users to configure

and update the PLC logic. Once a foothold is established, the

attacker can exploit that software’s unauthenticated command-

line interface to upload arbitrary codes or firmware and change

the PLC’s runtime behaviors [21], [22].

The PLC can also be attacked locally if the attacker has

physical access. The on-site attacker can download malicious

code to the PLC via the serial port or use the JTAG interface to



manipulate the PLC firmware, as demonstrated in [23]. Once

the firmware is corrupted, it can intercept and modify sensor

readings in the incoming messages, and/or the control logic

values before sending them to the actuators. Unlike control

logic attacks, firmware attacks are harder to detect because the

control logic looks legitimate to the workstation operators.

The sensors, as well as the communication channels be-

tween the sensors and the PLC, may also be compromised

(e.g., [24], [5]). We assume various techniques [25], [26],

[27] exist to protect the sensor readings. We also do not

explicitly address attacks on control center of the SCADA

system [28]. Many security solutions and standards [29], [30]

have been established to mitigate the associated risks. We

assume that some of these existing defence mechanisms have

been deployed to handle the problem of compromised sensor

readings and control center attacks. Hence, our work will focus

on detecting compromised PLCs. Our solution can be used

as an orthogonal technology to complement those techniques

against compromised sensors or control centers.

Design Considerations. Based on the threat model, we aim

to develop an IDS solution that achieves three key objectives:

• O1: It can detect malicious behavior of compromised PLC

in real-time and with very high accuracy.

• O2: It requires minimal manual effort to configure and

maintain.

• O3: It can be deployed to an ICS in a non-invasive manner

and introduces minimal attack surface.

The survey of existing IDS solutions (in Section II) and our

experimental evaluation (see Section VI) show that none of

the existing solutions can achieve all three objectives. Specif-

ically, mainstream NIDSes cannot detect advanced attacks

by compromised PLC (failing to meet O1) because it can

issue malicious commands that conform to network protocols.

However, they can be configured, deployed, and operated

relatively easily (meeting O2 and O3). Machine learning-based

NIDSes are unable to achieve very high accuracy (failing to

meet O1) and also require large efforts to collect normal and

attack data for training the model (failing to meet O2). Existing

invariant-based IDSes require significant manual effort from

experts (failing to meet O2), can be error-prone, and may not

detect attacks in real-time (failing to meet O1).

Motivated by the gaps of existing solutions, our approach is

to enhance an NIDS solution with a companion toolchain that

can automatically analyze the targeted PLC’s code to generate

IDS rules. Our approach is based on the observations that (1)

the PLC’s embedded logic is an accurate, fine-grained, and

comprehensive specification of the control operations over the

physical process, compared to other sources of information

(e.g., collected network traces or operational logs), and (2)

many ICS sectors (e.g., the smart power grid) have standard-

ized the way PLC logic is coded as well as their deployment

configurations. Furthermore, PLC code contains deterministic

logic and, typically, a small number of legitimate states. As

we will show, this allows the PLC code to be represented by

a state transition table with a small number of rows.

IV. COTORU: A TOOLCHAIN FOR IDS RULE GENERATION

In this section, we introduce CoToRu, our toolchain that

generates IDS rules using PLC code as the main input. As

shown in Fig. 1, CoToRu comprises two components: a state

transition table generator and a rules generator. CoToRu’s

state transition table generator first transforms PLC code

into a symbolic execution tree for modeling the conditions

that trigger the different state changes. Then, the symbolic

execution tree is converted into a state transition table. Using

the state transition table and some additional inputs, the rules

generator instantiates a set of specific IDS rules based on a

built-in set of generic IDS rule templates. The generated IDS

rules can be directly imported to the Zeek IDS for deployment.

A. State Transition Table Generation

We briefly overview the syntax of PLC programs and the

definition of symbolic execution trees for modeling PLC logic.

1) PLC Languages: The IEC 61131-3 standard [31] defines

five programming languages for PLC. Among these program-

ming languages, Structured Text (ST) is the most popular due

to its similarity to C language and its expressiveness to handle

various logic. The other text-based languages and graphical-

based languages can be converted into ST, as shown in [32].

For this reason, we focus on ST to explain the conversion

process. ST code is a series of statements formed using

variables, operators, conditions, and loops.

2) Symbolic Execution Tree: One way to generate IDS

rules is to directly convert the PLC code into a syntax that is

understood by the IDS engine. However, that approach implies

that the IDS rules will have the same running time complexity

as the PLC code. More importantly, putting operational code

into an IDS increases its complexity and makes it more

difficult to ensure the security and correctness of the IDS

itself. Additionally, any change in the PLC code will affect

a large portion of the IDS rules. This increases the cost of

maintenance and introduces more room for error. Thus, our

approach serves to analyze the PLC code written in ST and

abstract the logic into a form that can be easily integrated

into an IDS engine. Our goal is to reduce the running time

complexity to a simple table look-up operation at the IDS.

In particular, we utilize algorithms and concepts from the

mature area of symbolic execution to model the PLC program

as a symbolic execution tree that captures the conditions

necessary to produce a certain network message. Symbolic

execution has traditionally been used to test programming code

by generating test data that explores all control flow paths

through the program [33], [34], [35]. It has also been used

in tandem with formal methods to verify the safety of PLC

programs in an offline fashion [36], [37], [38].

Unlike the existing approaches, our purpose is to use

symbolic execution to extract a succinct model of the PLC’s

normal behavior and use that model to instantiate NIDS rules

that detect non-conformance to PLC logic. More formally,

symbolic execution is represented as a tree that consists of

nodes and edges where:



• each node maintains a state (stmt, σ, π) where stmt is

the next expression to evaluate, σ represents a value store

that assigns expressions over concrete or symbolic values

to program variables, and π is the path constraints, which

is a set of first order Boolean formulas representing the

conditions on the variables that need to be satisfied to reach

this node, and

• each edge represents a possible transition between states,

i.e., where stmt is either an assignment expression or a

branching condition.

The path constraints in each leaf node of the tree will then

contain the input variables conditions that result in an assign-

ment of some expression to the outgoing network message

from the PLC. Such a tree allows for easy conversion to a

state transition table.

The traditional algorithm for symbolic execution is to step

through the code line by line. At any time, the symbolic state

(stmt, π, σ) is maintained. If the stmt (i.e., code line) is an

assignment, e.g., x = a, then the value store σ is updated with

the expression. If the code line is a conditional statement based

on an expression e, then the symbolic execution is forked

into two separate symbolic states, where each symbolic state

represents the state of the code when e is evaluated to be True

or False. More specifically, the path constraint for the forked

states would be π ∧ e and π∧ ∼ e respectively.

3) State Transition Table: We use the resulting symbolic

states, which are the leaf nodes of the tree, to derive a state

transition table that maps the current PLC state to the next

PLC state, which includes the expected value of the outgoing

network message from the PLC.

First, we identify all the conditions, expressed as a function

of the PLC variables, that impact the PLC’s next state. Specif-

ically, we extract the path constraints, π, of all the leaf nodes.

Those Boolean formulas in the path constraint form the Key
in the table, which will then be used by the IDS to do a table

look-up. The result of the table look-up is NEXTSTATE, the

value expression of all the PLC variables at the end of the PLC

program’s scan cycle. So we use the expressions in the value

store, σ, to derive the NEXTSTATE. Those expressions consist

of calculation of values for (1) outgoing message variables and

(2) intermediate variables. For example, using the PLC logic

from our case study (Fig. 3), CoToRu will generate the state

transition table shown in Table II.

B. IDS Rules Generation

As the second component of CoToRu, the rules generator

automatically generates rules that can be directly deployed

to the Zeek IDS. The rules generator works by using the

information extracted from the PLC to instantiate an IDS rules

template that can detect the injection, modification, deletion,

and delay of network messages.

Zeek is an open-source network security monitoring tool

and its architecture consists of two components: event engine

and policy script interpreter [10], [39]. The event engine

handles the processing and parsing of network packets. The

policy script interpreter contains the IDS script which executes

a set of rules to monitor the parsed information for anomalies.

We chose Zeek because of its ability to retain state through

the use of global variables when processing the last network

message value received, intermediate variables, and state of

messages received. The Zeek scripting language is event-

driven. All events are placed in a FIFO queue.

Besides the state transition table, the rules generator needs

the deployment configuration and the PLC timing profile,

which can be retrieved automatically from the PLC software

project. The deployment configuration defines (1) the list of

all PLC variables, and (2) the mapping between the different

network packets and the corresponding PLC variables. The

PLC timing profile defines the time-domain behavior for each

type of message.

Mapping of PLC variables to network messages. The

mapping between PLC variables and network messages are

specified in the deployment configuration file. Finding the

mapping depends on (1) the type of communication protocol

used, (2) the encapsulation level of PLC variables in the

communication protocol, and (3) the support from the PLC

programming tool (e.g., CoDeSys [40]). In our case study,

V SD1 Start, SCADA Sync Activate, and In Sync are

Manufacturing Message Specification (MMS) messages and

V SD1 Command is a Modbus write command. To extract

the MMS-to-local PLC variable mappings, CoToRu uses the

Substation Configuration Language (SCL) file defined by IEC

61850 [41]. Similarly, there is a configuration file that specifies

the Modbus-to-local variable mapping. For CoDeSys, both

configuration files can be obtained via the export function of

its configuration tool.

The SCL file uses the logical device (LD), logical node

(LN), functional constraint (FC), data object (DO), and data

attribute (DA) defined in the IEC 61850 standard to describe

the data model used in communication by a physical device.

The CoDeSys software allows embedding of the PLC variable

name as part of a private block in the SCL file. Specifically,

the PLC variable can be found embedded in one of the DA in

the MMS object hierarchy. We used that information to parse

the SCL file and extract the mappings using a Java program

from our previous work [42]. Starting from the PLC variable

name (e.g., In Sync) at the DA level, the program reverses

the path from DA level upward to construct the corresponding

network mapping that will uniquely identify the packet field

used for communication, including: physical device ID (IP

address), and LD/LN$FC$DO$DA.

On the other hand, Modbus messages do not contain com-

plex hierarchical data structures. So for the Modbus-to-local

variable mapping, we only need to know the device IP address,

the function code x, and register index y used to access the

Modbus registers. We can retrieve that information by parsing

the corresponding Modbus deployment file.

Given the mapping information, CoToRu toolchain contains

scripts to automatically define event processing logic in the

event engine level. In our case study, for the In Sync
variable, the derived MMS mapping of the form (device IP,

LD/LN$FC$DO$DA) will be used to filter its value before



sending it to the policy script interpreter. Similarly, Modbus

device IP, function code x and register index y, is used to

create event handler function to extract the value at that

particular register address location to the script for processing.

Correspondingly, three matching event handler functions with

the same input arguments as those specified in the event engine

level will be defined in the script (.bro) level to complete the

association. Those event handlers at the script level will be

instantiated using the IDS rule template.

Detection logic in the CoToRu IDS template. The key

idea behind the IDS rules defined in the template is to identify

the violation of conditions that result in the sending of a

message and the values contained in that message. Intuitively,

our template rules check whether a message is expected (i.e.,

the conditions are true), and that the contents of the message

are valid (i.e., values are correct). We define a function

DO WE EXPECT in our template that uses the value of the

incoming messages to the PLC and the state kept in the IDS

to infer the value of the outgoing network messages from the

PLC. The state kept in the IDS refers to the values of the

PLC variables used for intermediate computation. Then the

IDS does a table lookup using the key value to obtain the

next state. We update the new state values and store the output

value into the corresponding global variables, which include

the expected values of messages to be sent by the PLC.

The detection logic is described in Table I. We assume that

the PLC sends an outgoing message periodically, with the

message inter-arrival time falling between TMin and TMax.

These timings are defined for each type of message and can be

retrieved from the PLC timing profile. There are three different

events in the template that are triggered by either the receipt

of network messages or the expiration of timers:

• RECV MSG TO PLC: This event handler is triggered upon

receiving network messages that are sent to the PLC. When

this function executes, the relevant values in the received

message are saved in the corresponding global variables. A

call is then made to the DO WE EXPECT function.

• RECV MSG FRM PLC: This event handler is triggered

upon receiving networks messages sent from the PLC. If

outgoing messages from the PLC are sent periodically, it

increments a message counter and sets a timer which will

be called after a duration of TMax. It also compares the

timestamp of the message with the previous message of the

same type. If the time difference is smaller than TMin, it

raises an injection alarm. Otherwise it proceeds to check

whether the contents of the message match the expected

variable (as calculated by the DO WE EXPECT function).

If the contents do not match, it raises a modification alarm.

• PERIODIC TIMER FINISH: This function is triggered when

the timer (set in RECV MSG FRM PLC) expires. When

this function executes, it compares the current message

counter with the recorded value of the message counter

when the timer was started. If the difference is more than

some threshold, it raises an injection alarm. If the difference

between the two counters is zero, it raises a deletion alarm

(i.e., some packet is deleted or delayed).

TABLE I
DETECTION LOGIC OF COTORU’S IDS RULES TEMPLATE

Events Logic

Incoming message to PLC
RECV MSG TO PLC

Record message values
Call DO WE EXPECT()

Outgoing message from PLC
RECV MSG FRM PLC

Increase message counter
Start periodic timer
If message time difference < TMin

raise Injection Alarm
If message value != expected value
raise Modification Alarm

Periodic timer
PERIODIC TIMER FINISH

If counter difference > threshold:
raise Injection Alarm
If counter difference == 0:
raise Deletion Alarm

Generation of IDS rules. To streamline the process of

generating IDS rules automatically, we have created tem-

plate functions that serve as placeholders for instantiating the

system-specific information (e.g., event handlers for network

messages, global variables replicating the PLC variables). In

particular, the global variable placeholders in the template are:

• K1 - Kn: Each Kx stores Boolean value corresponding to

the evaluation of the expression in some column of the Key.

• I1 - Ip: Each Ix stores the value corresponding to some

incoming message to the PLC.

• O1 - Om: Each Ox stores the calculated value of the

corresponding variable in the next state.

First, we instantiate global variables in the template that are

related to the incoming and outgoing messages. In particular,

we replace the I1 . . . Ip variable placeholders with the PLC

variable names (and initial values) representing the incoming

message variables. For each outgoing message type X from

the PLC, we use its corresponding PLC timing profile to define

the following global variables, which will be used for detecting

attacks that affect its behavior over the time domain:

• timer period X: The maximum inter-arrival time between

two consecutive messages of type X,

• timer min X: The minimum inter-arrival time between two

consecutive messages of type X,

• prev time X: The timestamp of the previous message of

type X, and

• inject counter X: The number of messages of type X that

has been received.

In our template, the RECV MSG TO PLC and

RECV MSG FRM PLC events are placeholder functions that

represents the event handlers for processing messages.

So a RECV MSG TO PLC event is generated for

each type of incoming message to the PLC, and a

RECV MSG FRM PLC event is generated for each type of

outgoing message from the PLC. The RECV MSG TO PLC

and RECV MSG FRM PLC event name will be replaced

with the corresponding event handler names defined in the

event engine level. Finally, the PERIODIC TIMER FINISH

event is a placeholder function that is used to keep track of

the periodic sending of the outgoing message from the PLC.

We duplicate the event (e.g., PERIODIC TIMER FINISH X)

for each outgoing message X from the PLC.

Next, we use the state transition table to instantiate the



Fig. 2. Data flow of synchronizing generator G1 to the grid

relevant global variables. We replace the O1 . . . Om vari-

able placeholders with the PLC variable names that ap-

pear in NEXTSTATE in the state transition table. For each

column x of Key in the state transition table, we cre-

ate a global variable Kx. In the template, we also de-

fine the global variable STATE TRANSITION TABLE which

maps the different value combinations of K1 . . .Kn (repre-

senting the value of the corresponding path constraints) to

some integer index that points to the corresponding updat-

ing logic. We replicate the key entries in the global vari-

able STATE TRANSITION TABLE. The NEXTSTATE entries,

i.e., expressions, are placed into a switch-case block in the

DO WE EXPECT function template. The indices into that

block are filled into the STATE TRANSITION TABLE accord-

ingly. Finally, the Boolean expressions of each Key in the state

transition table is replicated in the DO WE EXPECT function.

Note that we only need to instantiate the DO WE EXPECT

function and STATE TRANSITION TABLE once.

V. A POWER GRID CASE STUDY

We apply CoToRu to a high-fidelity power grid testbed

to demonstrate its applicability and performance in a prac-

tical setting. The power grid testbed consists of real-world

equipment for power generation, transmission, distribution,

and consumption. Specifically, the testbed consists of multiple

generators rated at 10kW each. The generated electricity is

distributed to programmable load banks to emulate different

loading profiles in the power grid. Each stage of the testbed has

its own set of switches, PLC, and IEDs to support different grid

operations. In this case study, we focus on the PLC deployed

in the distribution stage of the testbed, particularly its logic

for controlling a generator synchronization process.

PLC Logic: Generator Synchronization. Synchronization

is a process of connecting two or more generators to the grid

to supply a larger load. The generators are synchronized when

their frequency and phase angle match. Otherwise, an out-of-

sync condition may damage critical equipment as in [43] and

the 2007 Aurora generator test [44].

As shown in Fig. 2, the synchronization process involves

SCADA workstation, PLC, and IEDs. The two generators are

connected to two VSD-driven motors that are both controlled

1 IF VSD1 Star t = TRUE THEN
2 MBCFG ModbusVSD1 . VSD1 Command := 16#1D4C ;
3 END IF ;
4 IF SCADA Sync Activate = TRUE THEN
5 MBCFG ModbusVSD1 . VSD1 Command :=16#1D4E ;
6 END IF ;
7 IF In Sync = TRUE THEN
8 MBCFG ModbusVSD1 . VSD1 Command :=16#1D4C ;
9 END IF ;

Fig. 3. Synchronization logic in ST language.

TABLE II
STATE TRANSITION TABLE FOR SYNCHRONIZATION LOGIC

Key NextState

VSD1 Start SCADA Sync Activate In Sync VSD1 Command

0 0 0 VSD1 Command

0 0 1 7500

0 1 0 7502

0 1 1 7500

1 0 0 7500

1 0 1 7500

1 1 0 7502

1 1 1 7500

by the PLC using the Modbus protocol. The PLC uses the

MMS protocol in IEC 61850 standard [41] to communicate

with the SCADA and IEDs. The IEDs communicate with one

another using the Generic Object Oriented Substation Events

(GOOSE) protocol specified in the IEC 61850 standard.

Fig. 3 is a code snippet of the synchronization logic inside

the PLC program. The assumption is that G2 is already

connected to the grid and is spinning at 7500. The goal is

to connect G1 to supply power in parallel. In lines 1-3 of

the code, if “VSD1 Start” in the MMS message sent by

SCADA is true, the PLC will start the VSD-driven gener-

ator G1 by commanding M1 (VSD1) to rotate at a speed

of 1D4C16 (or 7500). Then in lines 4-6, when variable

“SCADA Sync Activate” in the MMS message is true, the

PLC will start the synchronization process by sending a

Modbus message to accelerate M1 at a speed of 1D4E16

(or 7502)1. The changes in motor speed will cause the phase

angle of G1 to catch up with the reference generator G2. The

phase angle of G1 is monitored by IED1. When the phase

angle difference between G1 and G2 reaches approximately

zero, the IED will close the circuit breaker via GOOSE and

send an MMS message to inform the PLC that synchronization

is complete. So, in lines 7-9, if variable “In Sync” in the

MMS message sent by IED1 is true, the PLC will send a

Modbus message to reset VSD1 to nominal speed, i.e., 7500,

to complete the synchronization process.

To apply CoToRu to this case study, the state transition table

generator first converts the ST code into a symbolic execution

tree that models the causal relationship between the control

commands to be sent and the various input signals and internal

control logic. That symbolic execution tree is then used to

generate a state transition table, shown in Table II.

Analysis of Network Traces. While the testbed provides

network traces in the public domain, the available traces do

1We note that 7500 and 7502 are speed parameters used by the PLC for
communication and do not represent the actual speed values for the generators
to spin. For 7500 (the nominal value), the generator is instructed to output
AC power at a frequency of 50 Hz.



(a) (b)
Fig. 4. (a) Speed readings from startup, synchronization, to shutdown. (b)
Speed readings and command during synchronization.

TABLE III
GENERATED ATTACK TRACES

Attack

Tactic

Packet

Operation
Description

WF1 Modify Modify Modbus command to VSD1 to 7500

WF2 Delay Delay VSD1 Modbus command by 75 s

WF3 Delete Delete VSD1 Modbus command

DS1 Modify Modify Modbus command to VSD1 to 7577 and VSD2 to 7425

DT1 Inject Vary VSD1 speed value between 0 and 8000

DT2 Modify Alternate VSD1 speed value between 0 and 7500

FC1 Inject Modify VSD1 speed value to 8200 just before In Sync command

FC2 Modify Modify VSD1 speed value to 0 just before In Sync command

not contain all the messages sent to the PLC during the

synchronization process. Hence, we conducted experiments

on the testbed to collect the required traces for analysis.

We repeated the synchronization process from the starting

of the motors to the synchronization of the generators and

then the shutdown of the motors. Fig. 4 shows the motor

speed measurements in one trace. During startup, the speed

of the motor will increase linearly from 0 to the specified

speed. During normal operation and synchronization, the speed

measurement fluctuates by ±1%. During shutdown, the motor

speed decreases linearly back to 0.

Attack Strategies. To attack the synchronization process,

we have identified four attack strategies: (1) preventing the

incoming generator from synchronizing (abbreviated as Wait

Forever (WF)), (2) delaying the synchronization of incoming

generator (abbreviated as Delayed Sync (DS)), (3) allowing

the synchronization to complete but with frequent speed

changes to cause short-term damage to the motors (abbreviated

as Damaging Transient (DT)), and (4) causing unbalanced

load upon completion of synchronization (abbreviated as Final

Change (FC)). These four strategies target the speed value

of the Modbus command sent to the motors (VSDs) through

injection, modification, delay, and deletion of messages. The

details of each attack tactic are summarized in Table III.

Generation of Attack Traces. We use the existing traces

from the testbed (in public domain) and our captured traces

as templates for the structures of the MMS and Modbus

packets. Our Scapy packet generator reads in the packets from

the two capture files and sends out modified packets based

on the attack tactics described in Table III. We generated

approximately 500 traces for each attack tactic. We also

generated 5000 traces of normal behavior.

VI. EVALUATION

We implemented the IDS rules generated by CoToRu in a

Zeek script that runs on the script interpreter layer. Zeek’s

standard distribution already contains a Modbus analyzer. To

parse MMS traffic, we used the MMS analyzer proposed

in [42]. To test our approach, we deployed a client to replay

our attack traces to the Hirschmann industrial switch. The

switch then forwards the MMS and Modbus packets to Zeek

for analysis. Zeek event engine decodes the packets and

triggers the corresponding event handler in the Zeek script to

execute the IDS rules. The test environment is shown in Fig. 5.

We evaluate the performance of CoToRu in terms of detection

accuracy and compare it with EDMAND [13], LSTM [15],

and an invariant-based IDS. We chose LSTM because it is

capable of learning temporal dependencies involving time-

evolving variables, e.g., motor speed.

A. Baseline Approaches

1) Statistical-based IDS: EDMAND allows the definition

of statistical-based features at different levels. We identified

five features and incorporated them into EDMAND’s statistical

framework for detecting synchronization attacks.

• Synchronization duration (f1): We use simple thresholding

to detect anomalies. As the duration can vary from 0 to 75

seconds, we set the duration threshold at 100 seconds to

allow for network and processing delays.

• Modbus speed command (f2): We use DenStream clus-

tering algorithm [45] to group data points into clusters. An

alarm will be raised when a data point cannot be classified

into existing clusters. We set the cluster radius to 2 so that

7500 and 7502 will be grouped into one cluster, and value

0 will form the second cluster.

• Reported motor speed (f3): We characterize the steady-

state speed readings as a unimodal distribution and use the

exponential moving average (EMA) and standard deviation

(SD) with a smoothing factor (α) of 0.01 to model the speed

readings. The smoothing factor accounts for decreasing

weights as the data evolves over time.

• Interarrival time (f4): Since the commands to the motor are

sent periodically, we use the EMA and SD with a smoothing

factor of 0.01 to detect anomalies.

• Phase angle difference (f5): Since the phase angle differ-

ence changes constantly, we use the exponential mean and

SD to characterize that data series.

For features f3, f4, and f5, if a new value of the feature

differs by more than one SD from its mean, it is labeled

as an anomaly. We adapted the EDMAND code [46] and

implemented the various detection mechanisms in Python.

We carefully tuned the parameters in EDMAND’s statistical

models and configured the overall detection threshold of

EDMAND to 0.95, which gives the best performance that

balances false positive and false negative.

2) Machine learning-based IDS: We formulate the detec-

tion problem as a binary classification problem, and use the

Keras Python library and TensorFlow framework to build a

stacked bidirectional LSTM model. Our model consists of

three hidden stacked layers, where the output of one layer

is used as the input to the next layer. For each layer, we use

the bidirectional LSTM to process the time-series data in both



Fig. 5. Test environment for evaluating CoToRu.

the forward and backward directions. Finally, we define two

dense layers and use the sigmoid activation function to make a

prediction i.e., class 0 (normal) or class 1 (attack). To prevent

overfitting, a dropout layer is added after each hidden layer to

improve the robustness of training.

We generated 5000 normal and 4000 attack traces, a total of

9,000 samples, and divided them into a 90-10% split between

training and validation. The attack traces are composed of the

attack tactics described in Table III, with 500 samples for each

tactic. We used a vector of six features to train a classifier:

synchronization duration, phase angle difference between the

two VSDs, and for each VSD, the speed command, and the

recorded speed values. Since this is a classification problem,

we use the binary cross entropy loss function and the Adam

optimization algorithm to train the model. We trained the

model for 100 epochs using a batch size of 64 and a learning

rate of 0.0001. Once the model is trained, we generate a test

set consisting of 500 normal traces and 500 attack traces (for

each attack tactic) to evaluate the accuracy of the predictions

made by the trained model. When generating new attack

traces, we used different speed settings without changing the

attack strategies to build more diverse test data. Our goal is to

evaluate how well the LSTM model generalizes to new attacks.

3) Invariant-based IDS: We defined a set of invariants,

based on expert guidance, that reflect the physical synchro-

nization process. Those invariants check that the state of the

system during synchronization satisfies the physical changes

undergone by the motors. In particular, the phase angle be-

tween the two motors should close at a rate relative to the

difference in the set motor speed and the two motors will

then synchronize within an upper bound time limit. The speed

of the two motors should also remain within a certain range.

Specifically, we define three stateful invariants (the bounds in

the invariants cater for measurement noise):

• RPM: During synchronization, the speed recorded by the

VSD must be within 60 of the default 7500 value.

• Phase Angle Variation: During synchronization, the differ-

ence between the rate of change of phase angle for VSD1

and VSD2 must be between 3.2◦ and 6◦.

• Synchronization Duration: After synchronization is

started, the difference in phase angle of the two motors

must be below 5◦ after 100 seconds has elapsed, i.e.,

synchronization has been achieved.

We implement the invariant-based IDS as a Python program

that takes the network traces (attack and normal) as input.

The IDS processes each packet and will only start checking

the invariants after receipt of a ”SCADA Sync Activate”

message. If any invariant is unsatisfied, an alarm is raised.

B. Detection Performance Results

Metrics. To compare CoToRu with the baseline approaches,

we use the precision and recall metrics. Precision calculates

how many attack predictions made by the classifier are actual

attacks, whereas recall measures how many of the actual

attacks are classified as true positives. For features that respond

slower to the effects of attacks (e.g., synchronization duration,

reported motor speed, and phase angle difference), we evaluate

the precision and recall based on a sequence of packet events

instead of a per-packet basis. Specifically, we consider the

packet sequence between the first attack packet and the last

attack packet. If a classifier raises an alarm in response to

any attack during that packet sequence, then both recall and

precision are 100%. If the classifier cannot detect any attacks,

recall is 0% and precision will be undefined (undef ) due to

TP and FP being 0. For all the approaches, we mark the use

of a packet sequence for detection (with an ∗) in Table IV. We

also measure the detection delay, DDelay, which is the time

delay for a classifier to raise an alarm from the onset of an

attack. In situations where there is no detection i.e., recall is

0, the evaluation of detection delay is not applicable (denoted

as N.A.). A lower detection delay is desirable.

EDMAND: Table IV shows that none of the features can

detect all attacks. Synchronization duration (f1) can detect de-

lay, deletion, and variants of modification attacks that prevent

synchronization from occurring. Modbus speed commands (f2)

and speed readings (f3) can detect modification attacks whose

values are far away from the mean. Interarrival time (f4) can

detect delay and injection attacks. Phase angle difference (f5)

can detect modification or injection attacks that result in a

phase difference that is far from the mean of 4.8◦. Even for

those detected attack tactics, EDMAND suffers from both false

positives and false negatives. Despite careful tuning of the

threshold, its performance is inferior to LSTM which we will

present next. Also, the detection delay depends on the set

thresholds and the packet sending rate. So most detections

are not immediate except for Modbus speed commands (f2).

LSTM: Our results show that LSTM can achieve an aver-

age precision and recall of about 98% and 95% respectively,

if we look at all the attacks together. More specifically, it can

achieve 100% recall for all the Wait Forever attack strategies,

but can miss 15% of attacks for FC1. Its high precision (about

98%) can be explained by the distinct difference in pattern

between the normal data and the more identifiable attack data,

which allows LSTM to tell them apart. However, for more

stealthy attacks (i.e., FC1) which look similar to normal data,

the recall is < 90%, which means it can miss a substantial

percentage of attacks which could lead to cascading failures

and damage to the generators. That makes it unsuitable for

protecting critical ICS. From an operational aspect, even a

98% precision may not be sufficient as it could result in high



TABLE IV
DETECTION PERFORMANCE OF THE THREE BASELINE APPROACHES AND COTORU FOR DIFFERENT ATTACKS.

Attack

Tactic

Packet

Operation

EDMAND

f1* f2 f3* f4 f5*
Prec Recall DDelay Prec Recall DDelay Prec Recall DDelay Prec Recall DDelay Prec Recall DDelay

WF1 Modify 100 100 100.02 undef 0 N.A. undef 0 N.A. 0 0 N.A. 100 100 1.04

WF2 Delay 100 100 100.16 undef 0 N.A. undef 0 N.A. 8.33 100 50.94 100 100 1.42

WF3 Delete 100 100 100.09 undef 0 N.A. undef 0 N.A. 25 100 53.59 100 100 1.23

DS1 Modify undef 0 N.A. 100 0.28 ≈0 undef 0 N.A. 0 0 N.A. undef 0 N.A.

DT1 Inject undef 0 N.A. 100 30 ≈0 100 100 0.33 52.63 100 ≈0 100 100 2.63

DT2 Modify undef 0 N.A. undef 0 N.A. 100 100 0.39 0 0 N.A. 100 100 2.50

FC1 Inject undef 0 N.A. 100 0.21 ≈0 100 100 0.43 50 100 ≈0 undef 0 N.A.

FC2 Modify undef 0 N.A. undef 0 N.A. 100 100 0.41 0 0 N.A. undef 0 N.A.

Attack
Tactic

Invariant
Stacked Bi-LSTM*

Stacked Bi-LSTM*
(using reduced training set)

CoToRu
RPM* PAV* SD*

Prec Recall DDelay Prec Recall DDelay Prec Recall DDelay Prec Recall DDelay Prec Recall DDelay Prec Recall DDelay

WF1 undef 0 N.A. 100 100 1.048 100 100 99.84 98.6 100 320.60 99.6 97.6 330.95 100 100 ≈0

WF2 undef 0 N.A. 100 100 0.02 100 100 100.9 98.0 100 247.58 99.4 100 239.41 100 100 ≈0

WF3 undef 0 N.A. 100 100 1.23 100 100 102 99.0 100 320.94 99 100 327.71 100 100 ≈0

DS1 100 100 0.01 undef 0 N.A. undef 0 N.A. 99.0 95.6 332.08 99 97 335.56 100 100 ≈0

DT1 100 100 0.33 100 100 2.62 undef 0 N.A. 98.4 99.8 320.62 99.8 96.2 327.98 100 100 ≈0

DT2 100 100 0.38 100 100 2.49 undef 0 N.A. 98.4 99.4 321.47 100 98.4 323.08 100 100 ≈0

FC1 undef 0 N.A. undef 0 N.A. undef 0 N.A. 97.3 85.0 272.63 96.5 33.4 280.17 100 100 ≈0

FC2 undef 0 N.A. undef 0 N.A. undef 0 N.A. 99.4 99.8 295.87 98.2 67.2 282.77 100 100 ≈0

Note: Features marked with * are evaluated over a packet sequence. Prec=TP/(TP + FP ) and recall=TP/(TP + FN)
Values in Prec, and Recall columns are in percentage (%). ’undef’ in Prec columns denotes undefined, meaning the IDS solution cannot detect any attack.
Detection delay (DDelay) is measured in seconds.’N.A.’ in DDelay columns denotes not applicable since there is no detection at all.

number of false alarms when deployed to a large system.

Another drawback of the approach is that it needs to look at a

packet sequence over a sufficiently long time period in order

to make a decision, resulting in an average delay of around

300 seconds in our experiments.

In addition, if LSTM is not trained on examples of unseen

attacks, then LSTM may fail in detecting those attacks when

it occurs. To demonstrate LSTM’s performance on unseen

attacks, we retrained the LSTM model using a reduced training

set by excluding one attack strategy at a time during the

training phase. The excluded trace is then used to evaluate

the model’s accuracy. The third column in Table IV shows a

further drop in recall for most cases, especially for the Final

Change attack strategy. The low recall indicates that a large

proportion of attacks were not identified by LSTM.

Invariant-based IDS: The Final Change attack strategies

are undetectable by all the invariants. That is because that

attack strategy relies on synchronization having been achieved

before performing the attack. Thus, the three invariants will

not be violated. Individually, the RPM invariant (RPM) is able

to detect all the other attack strategies except the Wait Forever

attack strategies because under those WF attacks the speed is

set to revolve around the motor’s normal operating conditions.

The Phase Angle Variation invariant (PAV) cannot detect the

Delayed Sync attack strategy because the phase angle invari-

ant is carefully preserved by the attacker. Finally, the Sync

Duration (SD) invariant performs the worst in accuracy. That

invariant only detects the Wait Forever attack strategy because

synchronization is never achieved. Also, it only detects that

attack after the pre-set threshold of 100 seconds.

CoToRu: Table IV shows that CoToRu achieves 100%

precision and recall in detecting all the attack scenarios with

minimum detection delay. That is because the IDS rules

generated by CoToRu exactly capture the PLC logic that

describes the operational behavior of the PLC at a fine-grained

packet level. None of the other approaches can achieve this. In

addition, compared with all the other approaches, we do not

need to calibrate any threshold to make a trade-off between

detection accuracy and false positive rate, nor does CoToRu

need any training data.

VII. CONCLUSION

This paper presents CoToRu for automating the generation

of IDS rules to secure ICS against compromised PLC. CoToRu

analyzes the PLC code to automatically generate a state tran-

sition table that models the operational behavior, and it uses

an IDS rule template to automatically generate rules that can

directly be used by Zeek IDS to detect injection, modification,

deletion, and delay of command messages. Using a power

grid testbed as a case study, we showed CoToRu’s IDS rules

can achieve 100% detection accuracy with sub-millisecond

detection delay against a range of advanced attacks, which

cannot be achieved by other existing approaches. Overall,

CoToRu achieves three desirable objectives for protecting

ICS, i.e., accurate and real-time detection of compromised

PLC, minimal manual effort to configure and maintain, and

easy/secure deployment to a standard NIDS solution. Our

plans for future work is to extend the CoToRu toolchain to

a water treatment plant and look at building a state transition

table for modeling the behaviors of multiple PLCs to help

detect more complicated, multi-stage attacks.
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