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Abstract—Manufacturing Message Specification (MMS) pro-
tocol is widely used in IEC 61850-based substations to improve
process automation. However, it could be vulnerable to various
cyber threats. A common defense solution is to deploy intrusion
detection systems (IDSes) to analyze network traffic for anoma-
lies. However, several challenges remain for designing a protocol
parser for IDS to dissect MMS packets, such as the need to
support many MMS services and the complex data structure.
Moreover, processing every MMS packet may overwhelm the
IDS to impact the throughput and latency. In this work, we
develop an MMS parser for the open-source Zeek IDS to analyze
MMS traffic and detect intrusions. We explain the challenges of
parsing MMS packets and detail our design choices. To reduce
the processing load, we implement filtering rules in our parser
to customize which MMS packets are used by Zeek rules for
intrusion analysis. We formulated test cases to validate our
parser’s correctness and conducted experiments to evaluate its
throughput and latency. Our results show that custom filtering
of MMS packets can achieve higher throughput and lower delay
compared to no filtering. We provide a case study to demonstrate
how the parsed data can be used for designing IDS rules.

I. INTRODUCTION

The electrical substation has undergone several design
changes in recent years [1]. One key advancement is the
adoption of IEC 61850 standard [2], which aims to replace
all hardwired connections with more advanced Ethernet and
TCP/IP technologies to improve communications. The main
contribution of IEC 61850 is the definition of abstract data
models that allow devices from different vendors to interoper-
ate. The current protocol mappings are manufacturing message
specification (MMS), generic object oriented substation event
(GOOSE), and sampled values (SV).

However, these protocols are not designed with security in
mind and, thus, vulnerable to various cyberattacks [3], [4]. An
example is CrashOverride [5], a malware capable of spoofing
malicious IEC 61850 payloads to control substation equipment
and shut down the power grid. Although the IEC 62351 secu-
rity standard [6] exists to protect these protocols, those security
measures (i.e., digital signatures and authentication schemes)
are often not implemented in real-world systems due to legacy
and performance issues [7]. Hence, many security practitioners
use intrusion detection systems (IDSes) to analyze network
traffic and detect cyberattacks [8], [9]. In this direction, many
IDS solutions have been developed using the open-source Zeek

framework [10]. Zeek relies on protocol parsers to perform
deep packet inspection and custom scripts that operate on
parsed data to generate intrusion alerts. While there are parsers
to decode well-known ICS protocols such as DNP3 [11] and
IEC-104 [12], none has been developed for IEC 61850-based
protocols, in particular MMS. The reasons are mainly due to
the complex data model (i.e., optional fields that may or may
not exist in the packet), the need to support a large number of
MMS services, and the recursive data structures. Furthermore,
sending every MMS packet to Zeek for analysis may increase
the processing time to respond to malicious traffic.

Motivated by these gaps, we design a protocol parser for
Zeek to analyze MMS traffic in a power grid environment.
The parser is developed using BinPAC [13] and can extract
packet metadata which Zeek associates as events in the Zeek
scripts to implement IDS rules to detect network anomalies.
In more detail, we explain our design choices for handling
optional fields and recursive MMS data structures. To reduce
the processing load, we develop an automatic program to
allow users to customize which MMS packets to send to Zeek
for analysis. We consider different cases of optional fields in
the MMS packets and design extensive test cases to prove
the parser’s correctness. We further conduct throughput and
latency experiments to demonstrate the performance improve-
ments of using custom events and provide sample Zeek scripts
to explain how events are used to construct IDS rules. By open-
sourcing the parser [14], [15], users can adapt it to design IDS
solutions or use it to analyze attack datasets (e.g., [16]–[18])
for cybersecurity research.

II. RELATED WORK

Many tools are available to interpret MMS traffic. For
example, an MMS plugin is available for Wireshark to perform
static analysis. The plugin is created using the Asn2wrs com-
piler [19]. There are also tools for generating MMS packets.
An example is libiec61850 [20], which is available in C++ and
Java. Another tool is IEDExplorer, which is an IEC 61850
tool for generating and testing MMS communications [21].
However, only limited services are supported, such as initiate/-
conclude, read and write services. In [22], a communication
stack library was developed for MMS using object-oriented
approach. The library is developed to understand the MMS
stack, including providing support for implementing MMS-
based applications. We note that none of the tools can be978-0-7381-3184-9/21/$31.00 ©2021 IEEE



Fig. 1. MMS PDUs between a client and a server

integrated with IDS solutions in the open-source community.
In contrast, we design and implement an MMS parser for Zeek
using BinPAC to extract semantic information from packets as
events, which Zeek then processes at the script level to analyze
the traffic patterns for signs of attack.

III. PRELIMINARIES

A. MMS Protocol Specifications

As shown in Fig. 1, MMS is a client-server protocol in
which the client sends MMS protocol data units (PDUs) to
request MMS services, while the server responds with the
requested data. More specifically, the initiate-RequestPDU is
used whenever the client wants to establish a connection with
the server. The initiate-RequestPDU is confirmed by initiate-
ResponsePDU from the server. If an error occurs during the
connection, the server will reply with the initiate-ErrorPDU;
otherwise the next phase is data transfer, which involves
sending a confirmed-RequestPDU (client) and a confirmed-
ResponsePDU (server). Each instance of the confirmed-
RequestPDU and confirmed-ResponsePDU is related by an
unique InvokeID integer. It is through confirmed-RequestPDU
that MMS service messages are exchanged to transfer data.
Some example of MMS services are getNameList, read, write,
GetVariableAccessAttributes, etc. If the server cannot provide
the requested data, the server will send a confirmed-ErrorPDU
containing the service type and the InvokeID from the request
PDU. At any point in time, the client can initiate a cancel-
RequestPDU to cancel a specific service. The server will
then follow up with a cancel-ResponsePDU if successful
or cancel-ErrorPDU to indicate failure. Finally, to close a
connection, the client sends a conclude-RequestPDU to the
server. Similarly, the server replies conclude-ResponsePDU to
confirm or conclude-ErrorPDU when an error occurs.

The MMS message structure is described using ASN.1
Notation and is encoded according to the Basic Encod-
ing Rules (BER) [23]. ASN.1 uses keywords such as “SE-
QUENCE”, ”SEQUENCE OF”, “BOOLEAN”, IMPLICIT”,
“OPTIONAL” to define the syntax of messages. For example,

confirmed-RequestPDU is represented as a ”SEQUENCE”.
Each keyword is associated with a tag identifier to identify
its type. BER, on the other hand, specifies how data should be
encoded for transmission. Each data is always encoded in tag-
length-value (TLV) format. The first field refers to the ASN.1
identifier, the second field specifies the length of the value, and
the third field represents the data value. Typically, the type is
read first, followed by the length field to determine the number
of bytes to serialize or deserialize the data.

B. Mapping of IEC 61850 to MMS

The approach to mapping IEC 61850 to MMS [24], [25] is
to decompose a physical device into smaller functional units
called logical devices (LD), logical nodes (LN), functional
constraints (FC), data objects (DO), and data attributes (DA).
An LD is a virtual representation of a physical device that
describes a particular substation functionality such as control,
protection, and measurement, whereas an LN is a subset of the
functionality within a logical device. For example, a circuit
breaker provides control functions and can be modeled as an
XCBR logical node [26]. It contains various DO such as Loc
to determine the operation mode, Pos to determine the position
of the switch, etc. Each DO contains DA (e.g., stVal) to convey
the current status of the device. FC, on the other hand, specify
services (e.g., read, write) that are allowed to operate on the
data attributes. These definitions make up the MMS object
reference (e.g., IED1 CTRL/XCBR$ST$Pos$stVal) to access
the different states of the device.

The various data objects are specified in an IED capability
description (ICD) file produced by the manufacturer. The ICD
file describes the data model hierarchially in XML format to
enable easy configuration for deployment. It comprises three
sections: Communication, IED, and DataTypeTemplates. The
communication tag defines the connections such as subnet-
works, IP addresses, and access points. The IED tag describes
the IED data model comprising the LD and their associated
LN names. The datatype template defines the instantiated LN
type, DO type, DA type, and enumerate datatype associated
with each LD [27].

The IEC 61850 standard further defines a set of abstract
communication services to operate on DO and DA. Example
services are querying objects, getting/setting data values, con-
trolling system objects, manipulating reports or logs, including
other services like file operations. The abstract data and service
models are then mapped to the MMS protocol based on
associating MMS objects and MMS services to the various
IEC 61850 objects and communication services. More details
can be found in [2], [26].

C. Zeek and BinPAC

Zeek is a network security tool that provides deep packet
inspection and intrusion detection capabilities. Zeek’s architec-
ture is based on two components: an event engine and a policy
script interpreter. The event engine parses packets from the
network to generate events containing details of the packets.
The events are then passed to the policy script interpreter



where Zeek scripts execute a set of security policies on the
events to generate logs and raise notifications.

Zeek also comes preinstalled with BinPAC [13], a protocol
parser generator. BinPAC allows users to extend Zeek’s func-
tionality by defining how a new protocol is parsed and how
events are created. More specifically, BinPAC provides a set
of template files — protocol.pac, analyzer.pac, and events.bif.
For example, packet parsing is defined in the protocol.pac
file. Events are defined in the analyzer.pac and events.bif files
which then forward the details extracted by the protocol.pac
parser to the policy script interpreter for analysis. The general
workflow of using BinPAC is as follows: we define the packet
structure, i.e., the type and the length of each packet field
in the protocol.pac file. When a packet is parsed, the packet
structure will be passed to the analyzer.pac for deserialization.
Additionally, the analyzer.pac file implements callbacks to
generate events that will be processed by Zeek scripts. The
events must be defined in the events.bif file before they can
be used by the analyzer.pac file. Finally, BinPAC provides a
compiler toolchain to convert the files into corresponding C++
codes for integration with Zeek as a plugin.

IV. MMS PARSER DESIGN

A. Design Overview

Fig. 2 shows the proposed design and the testing workflow
for verifying the MMS parser’s correctness. The first step is to
translate the MMS protocol specifications into BinPAC scripts.
We define the various MMS PDU and MMS service packet
structures as record types in the mms-protocol.pac file. Then,
we specify the decoding logic in the mms-analyzer.pac file
to deserialize the byte string data. Deserialization is based
on BER-TLV encoding rules. In other words, we identify
MMS messages based on their ASN.1 tag identifiers specified
in [25]. For example, tag 0xa0 represents an MMS confirmed-
RequestPDU and tag 0xa1 denotes the getNameList service.
Next, we read the length to determine the size of the value field
to deserialize. Finally, we extract and decode the value. For
more complex packet structures, we define additional parsing
logic in the analyzer file to process them More details are
described in Section IV-B.

On successful parsing of a packet, the analyzer file will gen-
erate events and store them in the event queue for processing
by the Zeek scripts. Depending on the type of analysis, the
script either logs the information for monitoring purposes or
raises alerts when a packet violates certain security policies.
In our design, we distinguish between two types of events:
(1) generic events and (2) custom events. Generic events are
generated based on MMS service types (i.e., getNameList,
read, write, etc.). Custom events are generated based on user-
defined MMS object references. We introduce custom events
as a means to reduce the number of events that Zeek needs
to process in order to improve the response time to critical
events. Another reason is to provide users with more fine-
grained control to prioritize events monitoring.

To generate custom events, we develop a Java program
(EventGenerator.java) that takes a configuration file as input

Fig. 2. Building blocks of the MMS parser design. The parsing and decoding
logic are defined in *.pac scripts, which will be compiled by BinPAC into
C++ code to be deployed on Zeek’s event engine. Sample MMS test cases
are fed into the BTest framework as baselines where they will be compared
with decoded packets from the Zeek’s event engine to output pass/fail.

to automatically generate a custom-events.pac file. The con-
figuration file contains user-specified MMS object references.
Based on that information, the automatic program applies text
filters on the parsed MMS data to generate custom events for
analysis. We provide more details in Section IV-C. As a last
step, we formally define the events in the events.bif file so that
mms-analyzer.pac and custom-events.pac files can reference
them for execution. Once the scripts are implemented, BinPAC
compiles the scripts into C++ codes and integrate them as a
plugin into Zeek’s event engine. To verify the protocol parser’s
correctness, we generate some test cases as baselines and
use the BTest framework to verify that the MMS packets are
decoded correctly.

B. Parsing Strategies

As mentioned previously, the structure of MMS packets is
complex and of variable length. For example, a packet may
contain an OPTIONAL field, which means that the specified
field may or may not exist. If the OPTIONAL field is not
present, parsing will fail and the packet will be decoded
wrongly. In addition, some MMS packets may contain multiple
nested TLV structures, which further complicate the parsing
logic. Such dynamic data structure cannot be fully described in
the mms-protocol.pac file, so different parsing strategies need
to be adopted in the mms-analyzer.pac file. In the following,
we use the GetVariableAccessAttributes-Response packet in
Fig. 3 as an example to enumerate the different cases and
explain how to overcome them.

Case 1: Optional field followed by a required field: The
address field in the GetVariableAccessAttributes-Response
packet is an OPTIONAL field followed by typeDescription,
which is required. As there is no ’peek’ function in BinPAC
to check the next byte, the solution is to read the next
field and set a Boolean flag to true when the tag of the
OPTIONAL field (i.e., address field) is found, and then use
ASN1OptionalEncodingMeta provided in mms-asn1.pac file to



Fig. 3. Snippet of a GetVariableAccessAttributes-Response packet

parse further if needed. If the Boolean flag is false, it means
that there is no OPTIONAL field.

Case 2: Consecutive OPTIONAL fields: In GetVariableAc-
cessAttributes-Response packet, accessControlList and mean-
ing are two consecutive OPTIONAL fields. So there are 22

possible combinations to encode those OPTIONAL fields in
an MMS message. There is also a possibility that none of the
OPTIONAL fields is present in the encoded MMS message.
That means there are no more bytes to parse after the last
required field. To address consecutive OPTIONAL fields, a
“case” compositor is used to switch between cases when
OPTIONAL field(s) are present or otherwise. If at least one of
the OPTIONAL fields is present, more bytes need to be parsed,
and hence the MMS message will have non-zero length. Based
on this idea, we define a function in mms-analyzer.pac to
check the message length. If the remaining length is not
zero, the mms-analyzer.pac will pass the processing to the
mms-protocol.pac to continue with the parsing of OPTIONAL
fields. The parsing terminates only when the function in mms-
analyzer.pac returns false, indicating no more data is left to be
parsed. However, this approach can only handle two to three
consecutive OPTIONAL fields in the mms-protocol.pac file.
For MMS services with up to seven successive OPTIONAL
fields (e.g., DefineAccessControlList-Request), the parsing
logic can get complicated and difficult to maintain.

Case 3: Recursive calling problem: The GetVariableAccess
Attributes-Response service contains TypeDescription, which
has a recursive call for TypeSpecification. Without knowing
how many recursive structures are there in a packet, it is
difficult to define the packet structure in mms-protocol.pac.
Parsing such dynamic packets will result in a circular bug [28].
To resolve this error, we shift the processing to the mms-
analyzer.pac and decode each TLV structure separately.

C. Generic and Custom Event Generation

The next step is to generate events for Zeek to analyze.
When events are triggered, they will be processed by event

handlers defined in the Zeek script. In the following, we
elaborate on the generation of generic and custom events.

1) Generic Events: We generate generic events by creating
an event for each type of MMS service packet. As each MMS
packet is parsed, we store the values and their data types
into two separate vectors. We store the data types because
they are required to interpret the data values and to perform
computational analysis at the script level. After all the data
items have been processed, we define an event and pass the
two vectors as arguments to the script interpreter. Below is
how we instantiate an event for the status-request service in
the mms-analyzer.pac file. When the event fires, the connection
information, InvokeID, the data values, and the corresponding
data types will be sent to the script layer for processing.
B i f E v e n t : : g e n e r a t e s t a t u s r e q u e s t (
c o n n e c t i o n ()−> b r o a n a l y z e r ( ) ,
c o n n e c t i o n ()−> b r o a n a l y z e r ()−>Conn ( ) ,
i n v o k e i d ,
vec da t a ,
v e c d a t a t y p e ) ;

Some MMS services may contain domainID and itemID
information. Examples are write-request/response and read-
request/response services. DominID refers to the LD name,
while itemID represents the MMS object reference, i.e.,
LN$FC$DO$DA. They are present in the packet to uniquely
identify messages from different devices. To process those
packets, we concatenate the domainID and itemID before
storing them as a string into a global map. The map serves to
associate the value to a key. The key is the InvokeID which
is unique for each MMS request-response pair. On processing
a response packet containing data values, the InvokeID will
be used to retrieve the stored value (i.e., concatenated do-
mainID itemID string) from the map. This information, along
with the data values and data types from the response packet
will be passed to the script layer. Below is the syntax for
defining a GetNameList-response event with domainID and
itemID information.
B i f E v e n t : : g e n e r a t e g e t n a m e l i s t r e s p o n s e (
c o n n e c t i o n ()−> b r o a n a l y z e r ( ) ,
c o n n e c t i o n ()−> b r o a n a l y z e r ()−>Conn ( ) ,
i n v o k e i d ,
s t r i n g t o v a l ( c o n c a t e n a t e d d o m a i n i t e m i d ) ,
vec da t a ,
v e c d a t a t y p e ) ;

After that, we declare event handlers in the events.bif file
to interface with the Zeek script. The handlers for the above
two events are defined as follows:
e v e n t s t a t u s r e q u e s t %(c : c o n n e c t i o n ,
i n v o k e i d : count ,
d a t a : s t r i n g v e c ,
d a t a t y p e : i n d e x v e c %);

e v e n t g e t n a m e l i s t r e s p o n s e %(
c : c o n n e c t i o n ,
i n v o k e i d : count ,
i d e n t i f i e r : s t r i n g ,
d a t a : s t r i n g v e c ,
d a t a t y p e : i n d e x v e c %);



where c is the connection information, InvokeID is an unique
identifier associating the request and response packets, identi-
fier is the concatenation of the domainID and itemID.

2) Custom Events: Generic events can be quite resource-
intensive since we are generating an event for each MMS
service type. Besides, most service types often include packets
from other devices that are not needed for analysis. While
it is possible to filter unwanted events in the Zeek script,
script processing is slow and consumes many CPU resources.
Therefore, we decouple the event generation logic from the
mms-analyzer.pac file and create custom events instead.

Our approach is to filter parsed packets based on matching
the domainID and itemID information provided by the users.
In other words, we utilize the global map maintained by the
mms-analyzer.pac file to determine if we should send the
data values to the script as events. To do that, we develop
an EventGenerator.java program to automate the generation
of a custom-events.pac file. The syntax for creating custom
events is similar to generic events except that we populate
logic in the custom-events.pac file to filter specific packets
for event monitoring. In more detail, we leverage the ICD
file to enable users to extract the MMS object references they
wish to monitor. The ICD file contains private blocks that
define the mappings between the device’s local variables and
the MMS object references. The private blocks are generated
by the process owners before device commissioning and can
be enabled via the export function of the device configuration
tool. As shown in Fig. 4, the device variable name is embedded
in one of the DA as private property. Using that information,
we developed a SCLParser.java program to parse the ICD file
and extract the mappings into a CSV file. Specifically, our
program reverses the path starting from the DA level where
the variable name resides to the LD level and re-constructs the
MMS object reference. The output of parsing the ICD is the
following: device variable name, domainID itemID (i.e., the
concatenation of the device name, LD name, and MMS object
reference — LN$FC$DO$DA), and the index position of
the MMS object reference. The index is needed to access
the attribute value in the vec data vector created by the
mms-analyzer.pac. Based on this information, the users can
choose the variables they want to monitor and pass the
corresponding domainID itemID in a configuration file to the
EventGenerator.java program. The program then implements
the pseudocode below to generate the custom-events.pac file,

f u n c t i o n r u l e f u n c t i o n ( ) : boo l %{
i f ( S t r i n g M a t c h (X,< s t r i n g 1 >)== True ){

v a l u e = v e c d a t a [< index >] ;
B i f E v e n t : : g e n e r a t e <variable name >(
c o n n e c t i o n ()−> b r o a n a l y z e r ( ) ,
c o n n e c t i o n ()−> b r o a n a l y z e r ()−>Conn ( ) ,
s e r v i c e ,
i n v o k e i d ,
v a l u e ) ;

}
r e t u r n f a l s e ;%}

where StringMatch is a string matching operation, X is the
concatenated domainID itemID retrieved from the global map

Fig. 4. Mapping of device local variable to the DA object in the private block.
Sensitive details are intentionally omitted for privacy reasons.

by the mms-analyzer.pac and < string1 > is the domainID
itemID specified by the user. On a successful match, the

program will retrieve the attribute value from the vec data
vector by index, create a BifEvent and send the value
along with other connection information to the script. The
program will replicate many BifEvent functions equal to the
number of domainID itemID pairs in the configuration file.
Each BifEvent is indexed by < variable name > for easy
identification. We also send the service type encoded in integer
format to the script to identify the type of service message
being raised. The integer-to-service type mapping is defined
in the mms-tags.pac file (available in our Github [14]).

Next, we define a function call with the same name (i.e.,
rule function()) in the mms-analyzer.pac file so that each
time a packet is processed, it invokes the custom-events.pac
file. To summarize, the user specifies the domainID itemID
information in the configuration file in CSV format. The
EventGenerator.java program then auto-populates the skeleton
code with information from the configuration file to create
custom events. The Java programs can be found in our
Github [15]. The benefit of using a separate custom-events
file is that users can customize events without touching the
base code. Furthermore, it offers greater flexibility, reduced
complexity, and improved real-time performance.

V. EVALUATION

In this section, we explain the experimental setup and
evaluate the correctness and performance of our parser. Our
setup consists of an industrial PC, a laptop, and a Hirschmann
switch. Both industrial PC and laptop are connected to the
Hirschmann switch. The industrial PC runs Zeek, preinstalled
with our MMS parser, and acts as the IDS device. The laptop
is used as a traffic generator to send MMS packets into the
network. We set up the IDS to passively monitor the network
traffic by configuring the switch port connected to the laptop as
the mirror port so that packets sent by the laptop are replicated
to the industrial PC for analysis by Zeek.

A. BTest Framework

We used BTest framework provided by Zeek as a separate
installation to verify the correctness of our parser. The input to
BTest is a set of testing pcaps, most of which were generated
using libIEC61850 v1.4.0 [20] while some were extracted



Fig. 5. Throughput (pps) for one flow Fig. 6. Overall throughput for 4 flows

from pcaps generated in SUTD’s EPIC lab [29]. For each pcap,
we extracted all the fields and values to establish the baselines.
Next, we run btest-diff command on the same set of pcap
files to check if the output matches the baseline. If the output
matches, btest-diff will return success, else it returns failure.
We have validated that our parser can decode six MMS PDUs
and fifteen MMS confirmed services correctly. A complete
list of verified MMS services is available on our Github [14].
Test cases and corresponding pcaps are also included in our
repository for reproducibility.

B. Throughput and Latency

We generated a large pcap file (∼8.5GB) comprising 4 flows
with the majority of the packets using MMS read service
(88.4%) and some using MMS write service (0.3%). The rest
are non-MMS packets. The throughput measurements were
recorded by using tcprelay to replay packets at bandwidths
from 10Mbps to 100Mbps. For each bandwidth, we performed
10 runs to measure the average throughput. All experiments
were conducted on the industrial PC running 4 cores with
2.8GHz processors and 16GB RAM.

In the first experiment, we measured the throughput of one
flow in packets per second (pps) under two different settings.
In the first setting, we implemented some filtering logic (i.e.,
using domainID itemID) in a Zeek script to process MMS
response packets from a specific device. In the second setting,
we generated a custom-events.pac file to filter MMS response
packets from the same device at the event engine level. As
shown in Fig. 5, the parser starts dropping packets beyond
80Mbps when the filtering is performed at the script. This
degradation is because the event engine generates an event for
every packet that is parsed, which slows down the processing
speed of the script layer. With custom filtering at the event
engine, only selected packets will be passed to the Zeek
script. Thus, the parser can process all packets without any
packet drop. Fig. 6 measures the overall average throughput
for all flows without custom filtering. The figure shows that
the throughput peaks at around 75Mbps, which is sufficient for
most MMS-based applications involving hundreds of devices
because each MMS device has a low traffic volume of 1-2
packets per second. Even when operating at this maximum
throughput, we can use custom filtering to prioritize events

TABLE I
AVERAGE LATENCY FOR PROCESSING A PACKET

Event Engine (µs) Script (µs)
Base pcap (4 flows) 157.94 202.97
Script filtering (1 flow) 139.30 156.12
Custom filtering (1 flow) 125.03 140.55

to the script layer to avoid missing any critical packets for
intrusion analysis.

In terms of latency, we measured — (1) the time required
for the parser to decode the packet and trigger an event, and (2)
the cumulative time for the packet to reach the script level for
processing. In the latter, the latency measured at the script level
includes the processing delay incurred by the event engine. In
all experiments, the packets were injected into the network at
a low bandwidth (0.1Mbps) and the latency was averaged out
over 10 runs. As shown in Table I, the latency per packet is
the highest for multiple flows because the parser processes
every flow and every packet, and some packets are larger
in size. Adding a simple script to process all the generated
events results in an additional delay of 45µs per packet. If we
consider one flow with script filtering, the latency is lower,
particularly 139.3µs at the event engine and 156.12µs at the
script layer. Compared to script filtering, custom filtering has
the lowest latency because less events are generated. Although
the difference is small, about 15.6µs per packet, the latency
savings can be substantial if we consider many packets to
process at the script. Lower latency means Zeek can process
more packets. The latency is also directly proportional to the
complexity of the script. If the script is complex, the latency
per packet will increase further.

C. Attack Detection Case Study

For completeness, we provide sample Zeek scripts to show
how events can be used to detect attacks. We further evaluate
the “mean time to detect” metric, i.e., the time between
attack and detection, to demonstrate the performance gain
of using custom events for intrusion detection. The case
study used here is the generator synchronization process in
EPIC [29], [30]. Due to space limitations, we refer readers
to our Github [15] for more details. The key MMS messages
in the synchronization process are start sync command, phase
angle information, and sync complete command. We assume
an attack scenario where the incoming generator is rotating
at the same speed as the reference generator. Thus, the phase
angle will not decrease at the normal rate of 4-5◦ and the
circuit breaker will not close to connect the generator. Based
on this attack scenario, we implemented two Zeek scripts
(available on Github [15]) to raise alarms if the phase angle
change is outside the predefined limits of 4-5◦. The first
script uses generic events, i.e., MMS read response and MMS
write request, which requires filtering for the MMS object
references to identify the start sync command and the phase
angle packets. On receiving the start sync command, the script
checks whether the phase angle is decreasing at a normal
rate. Otherwise, the script issues an alarm. The second script



implements custom filtering, where the corresponding MMS
object references are filtered in the event engine and processed
directly by the custom handlers in the script. As such, no
filtering is required at the script level. Our results show that
both scripts can detect attacks. However, compared to the
generic script that requires 6.2µs, custom filtering only takes
2.6µs to detect an attack.

VI. CONCLUSIONS

This paper presents the design of an MMS parser, which can
be integrated with Zeek directly to analyze MMS traffic in a
power grid environment. We discuss the challenges of parsing
MMS packets and propose workarounds in BinPAC to support
parsing dynamic data structures. We provide customizations
through separate Java programs to allow users to personalize
events generation for best performance. The parser was evalu-
ated for correctness using the BTest framework. Experiments
were conducted to stress-test the parser’s performance. The
throughput results showed that the parser can achieve a high
throughput with reasonable delay. Specifically, the parser can
reach a throughput of 75Mbps. By open-sourcing the parser,
security practitioners and researchers can better understand
MMS semantics and design IDS rules to identify cyberattacks.
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