
RFID Counting over Time-Varying Channels
Ziling Zhou

Ampotech Pte. Ltd.
Republic of Singapore

Binbin Chen
Advanced Digital Sciences Center

Republic of Singapore

Abstract—For many applications that use RFID tech-
nology, it is important to count the number of RFID
tags accurately. However, the wireless channel between
the RFID tags and readers can introduce communication
errors, and the error rate may vary significantly over
time. No existing protocol can perform RFID counting
robustly (i.e., maintaining the estimation quality) over time-
varying channels. In this paper, we design RRC, a Robust
RFID Counting protocol that offers provable guarantees on
estimation quality over time-varying channels. Specifically,
regardless of how the communication errors occur, the
final output generated by RRC is always a standard (ε, δ)
estimate of the correct count n. Furthermore, the expected
amount of time needed by RRC is O(Y + 1

ε2
+(log logn)2)

for a constant δ, where Y is the number of communication
errors encountered by RRC. This makes the efficiency of
RRC asymptotically near-optimal.

I. INTRODUCTION

Radio-frequency Identification (RFID) technology in-
volves the use of low-cost RFID tags to track physi-
cal objects. Through wireless communication with such
tags, an RFID reader can gather information about the
corresponding physical objects. RFID technology lies at
the heart of many applications [1], from supply chain
management, enhanced retailer operations, to environ-
ment monitoring. RFID counting is a basic functionality
of RFID systems that counts (or estimates) the number
of RFID tags in a certain region. It is directly used in
many applications, such as product and people counting.
It also serves as a building block to support other
RFID functionalities, such as fast tag identification [8],
[16] and popular categories identification [14]. Due to
the fundamental role of RFID counting, researchers
have developed many efficient RFID counting protocols
over the past decade, including UPE [8], EZB [9],
LOF [12], FNEB [5], PET [17], ART [13], ZOE [18],
and SRC [19]. Here “efficiency” is defined in terms of
the amount of time needed for RFID counting.

Since RFID counting is performed via radio commu-
nication between the tags and the reader, communication
errors can happen, i.e., the information received by the

reader can be different from that sent by the tags. Com-
munication errors have been largely ignored by most of
the existing RFID counting protocols (e.g., [8], [9], [12],
[5], [17], [13], [19], [16]). Only a few recent ones [18],
[15], [7] consider communication errors. For example,
ZOE [18] estimates the communication error rate at the
beginning of its execution, and then compensates the
final result based on the estimated communication error
rate. ZOE’s approach assumes that the communication
error rate is constant during its execution. The other
protocols [15], [7] also make similar assumptions.

Unfortunately, wireless communication channels are
notoriously unpredictable and are often plagued with
bursty errors. Studies (e.g., [10], [2]) show that both
movement (e.g., of surrounding objects) and wireless in-
terference can cause sudden increase of communication
error rate in RFID systems. As will be shown in Figure 1
in Section V, when the communication error rate varies
over time, all existing protocols fail to achieve their
claimed estimation quality. For example, when there are
2000 bursty communication errors, all existing protocols’
actual estimation quality become 20 times worse than
what they claim to provide. Such an observation is not
surprising since these protocols either do not consider
communication errors, or rely on the assumption that
the communication error rate is not time-varying.

In this work, we design RRC, a Robust RFID Counting
Protocol that offers provable estimation quality and near-
optimal efficiency, despite of time-varying communica-
tion error rate. To the best of our knowledge, this is the
first protocol with such a strong guarantee. Specifically,
RRC has the following formal properties:

1) Robust against time-varying error rate. We do not
make any assumption on how the communication errors
occur over time. For example, there can be periods with
bursty errors whose communication error rates are much
higher than the average error rate during the execution of
the RRC. In fact, RRC is even robust against a malicious
attacker who can introduce a bounded number of errors
by examining the RRC protocol before its execution

and then strategically deciding which communication
errors to be introduced at which time slots. Being able
to achieve so serves as an ultimate attestation to the
robustness of our protocol.

2) Asymptotically near-optimal efficiency. We prove
that the expected amount of time needed by RRC is
O(Y + 1

ε2 + (log log n)2). Here Y is the number of
communication errors encountered by RRC during its
execution, n is the correct count, and ε is the estima-
tion quality (see below). A recent lower bound [19]
has proved that RFID counting takes at least Ω(1

ε2 +
log log n) time for all possible protocols and when the
communication is error-free. Under the typical setting
that 1

ε2 > (log log n)2 (for example, for ε = 0.05,
1
ε2 > (log log n)2 as long as n < 10120), RRC takes
O(Y + 1

ε2) time and the communication-error-free lower
bound is Ω(1

ε2). This means that RRC is asymptotically
optimal: Since the Y communication errors do not carry
useful information and since even without error one
needs Ω(1

ε2) time, it is not possible to achieve o(Y + 1
ε2)

time while tolerating Y errors. We can also interpret
this from another perspective: When Y is small, RRC
has the same asymptotic efficiency as a protocol that
cannot tolerate communication errors. As Y increases,
RRC takes more time to count and the additional time
scales linearly with Y . The key challenge for achieving
so is that RRC does not know the value of Y in advance.

3) Guarantees on estimation quality. We prove that the
final output n̂ generated by RRC is always a standard
(ε, δ) estimation of n, despite of the communication er-
rors. Specifically, Pr[n̂ ∈ [(1−ε)×n, (1+ε)×n] ≥ 1−δ.
We only consider δ = 1

3 in the following, since to
achieve a smaller δ, one can easily run RRC by O(log 1

δ)
times and takes the median value of the output results.

We achieve these strong guarantees in RRC by first
designing a novel building block, called Converging
Retries (CR). As its name suggested, CR uses retries
to deal with excessive communication errors, but it
ensures that the overall false negative rate throughout
the whole process does not accumulate in an unbounded
manner. Next, we show that an existing Simple RFID
counting (SRC) protocol [19] can be made robust, if
we strategically replace some parts of that protocol with
our new building block. Indeed, our RRC protocol is
constructed by incorporating CR into SRC. This is quite
interesting since while RRC offers substantially stronger
guarantees than existing RFID counting protocols, it
achieves so without introducing much complexity.

In the following, Section II formalizes the robust

RFID counting problem. Section III presents CR, a novel
building block for robust RFID counting. Section IV
shows how we use CR to transform an existing RFID
counting protocol into a robust one. Section V evaluates
the designed protocol and we conclude in Section VI.

II. PROBLEM FORMULATION AND RELATED WORK

RFID counting protocols. Consider an RFID reader and
a set of RFID tags within its communication range. In an
RFID counting protocol, the reader communicates with
tags in synchronized time slots so as to count the number
of tags (denoted by n). In each time slot, the reader sends
O(1) bits to tags, and a tag can either send a single bit
of “1” to the reader or keep silent (i.e., send nothing). In
the absence of communication errors, the reader receives
nothing when all tags keep silent, and the reader receives
“1” when at least one tag responds.

To avoid the high overhead of exact counting1, prior
RFID counting protocols are designed to provide an
(ε, δ) approximate counting result n̂ such that

Pr[n̂ ∈ [(1− ε)× n, (1 + ε)× n]] ≥ 1− δ

The probability is taken over random coin flips done
by the randomized protocol. Since each slot takes a
constant amount of time, an RFID counting protocol’s
time overhead is asymptotically the same as the total
number of slots it uses. Specifically, we say that the
asymptotic overhead of an RFID counting protocol is
O(x), if for all inputs, it needs O(x) slots on expectation
(expectation is taken over the toss of a random coin) for
achieving the accuracy target.

Time-varying channel and robust RFID Counting.
When there are communication errors between the reader
and the tags, the reader may receive a “1” when all tags
are silent, or it may receive nothing when there is at
least one tag sends “1”. For a time-varying channel, the
erroneous slots can distribute in an arbitrary manner over
time. One can conceptualize a time-varying channel by
an infinite long tape with three types of symbols: 1 ,
0 , and . The RFID reader always receives “1” in

a slot with 1 symbol, and always receives “nothing” in
a slot with 0 symbol. The slot is error-free when the
corresponding symbol is .

In this work, we aim to construct a robust RFID
counting protocol that can continue to provide (ε, δ)
estimation guarantee despite the worst-case time-varying

1The exact counting overhead is fundamentally high (see [19]).

2

channel. In other words, a robust RFID counting protocol
should be able to continue to provide the guarantees on
estimation quality, even if there is a malicious attacker
who can examine the protocol before its execution and
strategically decide which communication errors to be
introduced at which time slots.

Related Work. While RFID counting protocols have
been extensively studied in the literature, most efforts
focus on improving the protocols’ time efficiency and
they do not consider communication errors. Some recent
protocols, e.g. [18], [15], [7], consider communication
errors, but they assume that the channel remains stable
over time. Our evaluation in Section V shows that all ex-
isting protocols lose their estimation quality guarantees
when the channel varies over time.

For wireless communication systems in general, there
are many techniques (e.g., [11], [6], [3]) that deal
with communication errors in time-varying channels.
However, for RFID counting, the tags and the reader
form a backscatter network, where the tags respond in a
synchronized manner and their replies are “OR”-ed to-
gether to provide the input to the reader. Hence, existing
techniques such as error correcting or error estimating
coding schemes [3] are not directly applicable.

III. CONVERGING RETRIES (CR)

To achieve robust RFID counting, we first design
a building block called Converging Retries (CR). A
common structure in many RFID counting protocols is to
have a sequence of information slots, where in each slot,
each tag responds with some probability p. CR enables
an RFID counting protocol to continue use a sequence of
such information slots, despite of time-varying channels.

A. Overview and Intuition

Error-catching slots. A basic idea to achieve CR’s
functionality is to insert error-catching slots into the
sequence of information slots. These slots have pre-
determined values (i.e., either 0 or 1). Specifically, the
reader creates a 0 slot by asking all tags to remain silent,
and it creates a 1 slot by sending some request that will
trigger response. For a given error-catching slot, if the
reader does not see the expected outcome, it knows that
there must be a communication error.

CR uses the information slots and the error-catching
slots in an interleaving manner, by performing a random
permutation to determine the sequence of these slots.

The random permutation can be done based on pseudo-
random number generators, and hence the resulting po-
sitions of the error-catching slots are independent of the
errors in the communication channel. In other words,
one can imagine that the communication channel decides
the positions of the errors first, and then CR flips coins
to decide the positions of the error-catching slots. As a
result, the error-catching slots will see their “fair share”
of the errors.

Based on the errors observed by the error-catching
slots, CR is able to estimate (with provable guarantees)
the number of 1 and 0 errors in the sequence. This in
turn allows CR to compensate for such communication
errors occurred in the information slots. Note that this
is only possible because of the random permutation.
Specifically, with the random permutation, the informa-
tion slots will also see their “fair share” of the errors, and
hence we can use the estimation from the error-catching
slots to compensate for those errors.

Retries and false negative. Intuitively, if we observe
errors in a sufficiently large fraction of error-catching
slots, a large fraction of the information slots will likely
be erroneous as well. When this happens, the information
slots may simply do not contain sufficient amount of
useful information to generate a good estimate of the
RFID count. In such a case, CR will retry with new
slots. Conducting retries is necessary for any protocol
that aims to tolerate communication errors: for example,
if most information slots are erroneous, no protocol can
provide a meaningful output without further retrying.

On the other hand, a key challenge is that such retries
may result in uncontrolled growth of false negative
rate: Whenever the protocol tries to judge whether the
number of erroneous slots is excessive, there is a certain
probability of having a false negative, i.e., the actual
number of erroneous slots is excessive, but the protocol
incorrectly believes that the number of erroneous slots
is not excessive and then proceeds to produce an output.
Such a false negative fundamentally comes from the
randomization step (i.e., random permutation) in the
protocol. As we explained earlier, the randomization step
is a key step that we use to deal with time-varying
distribution of communication errors.

If the protocol only needs to make the judgement
once on whether it can output an estimate, it is easy
to control the false negative rate. But with possible
retries, the protocol may need to make the judgement
for an unknown number of times, which can result in
uncontrolled growth of the overall false negative rate.

3

For example, imagine that the number of erroneous slots
is always above the threshold for proper estimation.
Ideally, the protocol should never output in such a case,
since it never collects enough information and whatever
result it generates will be wrong. But if one designs the
protocol naively, with each retry, the protocol has a small
probability of having a false negative and generating an
output. Eventually the protocol will always output, and
the output will always be wrong!

Making the overall false negative rate converge. To
overcome the challenge of uncontrolled overall false
negative rate, CR uses the following simple yet effective
technique. Whenever the protocol intends to make a
judgement, it utilizes all information available, including
the information in the current trial as well as in all
previous trials. While it may be obvious that using more
information helps, it is an interesting observation that by
using all the information, the overall false negative rate
becomes well-bounded.

More specifically, if using a trial by itself would result
in a false negative rate of r, we observe (see proof later)
that combing all the x trials the protocol sees so far
would result in a false negative rate of rx. Thus if the
protocol does x trials and makes x judgements where
each judgement is based on all trials so far, the overall
false negative rate will be r+r2+r3+. . .+rx < r/1−r.
Hence the overall false negative rate converges, despite
that for each judgement the protocol introduces some
extra false negative rate.

B. Detailed Design and CR’s Formal Guarantees

R-Trial. Before presenting CR, we first describe a sub-
routine called R-Trial (Robust Trial) invoked by CR. An
R-Trial consists of l slots, where:

• 4l
5 slots are information slots. In each of them, each
tag independently responds with probability p.

• l
5 slots are error-catching slots, which are used to
estimate the number of 1 and 0 symbols on the
channel tape. Specifically, in half (l10) of them, the
reader requests all tags to respond; hence, if n > 0
and the reader receives “nothing”, it catches a 0
symbol on the channel tape. For the other half, the
reader requests all tags to keep silent; hence, the reader
catches a 1 symbol when it receives “1”.

The two types of slots are randomly shuffled in an
R-Trial. One can also choose other ratio between these
two types of slots. Doing so will only affect the constant
factors in our analysis, but not the asymptotic form of

the protocol’s overhead. Let the random variables b and
w denote the number of 1 and 0 symbols caught by
an R-Trial’s error-catching slots. Let the random variable
z denote the number of empty information slots. Since
the information slots are uniformly randomly distributed
in an R-Trial, we can use the fraction of slots that catch
1 symbols, i.e., b

l/10 = 10b
l to estimate the fraction of

1 symbols in the whole R-Trial. Similarly, 10w
l is an

estimate of the fraction of 0 symbols in the R-Trial and
l−10b−10w

l is an estimate of the fraction of symbols.

We estimate n by examining the information slots with
symbols, the number of which can be estimated by

4l

5
× l − 10b− 10w

l
=

4l

5
− 8b− 8w

We estimate the number of empty slots inside them by:

z − 4l

5
× 10w

l
= z − 8w

This is because out of the z empty information slots the
reader sees, on expectation 4l

5 ×
10w
l of them correspond

to 0 symbols. Now look at the ratio of empty slots
in the information slots with symbols. Such a slot
becomes empty iff all tags do not respond in it. Hence:

E[
z − 8w

4l
5 − 8b− 8w

] = (1− p)n

With this, we can use

ln(
z − 8w

4l
5 − 8b− 8w

)/ ln(1− p)

as an estimate of n.

Converging Retries (CR). Algorithm 1 provides the
pseudo code of CR. CR invokes R-Trial as a subroutine
to estimate n. For that, it first needs to determine l,
the length of R-Trial according to the estimation quality
requirement of ε. In general, there are two approaches to
determine l [19]. The first approach is to use a closed-
form solution that is derived from mathematical analysis.
The second approach is to construct a lookup table.
Since the results from the mathematical approximation
is not tight, we use the lookup table approach in RRC
to determine l. To construct this lookup table, we run
R-Trials extensively under varying error settings and a
wide range of n value to find the value of l needed to
achieve a “safe” result. By Lemma 3 (see later), given ε
and a constant bound for false negative rate, it is always
possible to use such an approach to find an l = O(1

ε2)
that satisfies our condition.

4

Algorithm 1 CR (Converging Retries)
// invoked with p, ε, and a global variable K

1: determine l according to ε;
2: invoke R-Trial(p, l) for K times;
3: while true do
4: examine all slots this CR incurred so far;
5: if error fraction in error-catching slots > 1

8 then
6: invoke one more R-Trial(p, l);
7: else
8: return an estimate of n based on all slots;
9: end if

10: end while
11: update global variable K ← K + 1;

As shown in Algorithm 1, if CR detects a significant
fraction of slots containing communication errors (line
5 - 6), it automatically retries. CR terminates when the
channel becomes good enough for it to estimate n (line
8). Importantly, CR ensures that the overall false negative
rate is bounded, regardless of the number of retries it
conducts throughout this process. As explained earlier,
CR achieves so by using all slots it sees so far (line 4).

Furthermore, our design associates CR with a global
variable K. The use of K allows CR itself to be called
multiple (even infinite) times while ensuring that despite
of all these invocations, the overall false negative rate
for all of them together is bounded. This is achieved
since each call of CR increases K by 1 (line 11). This
translates to a multiplicative reduction of false negative
rate for the next CR invocation, making the overall false
negative rates of all CR invocations bounded.

To formally describe CR’s guarantees, we first char-
acterize what kind of estimate is considered “safe”, i.e.,
the returned estimate won’t cause false negative.

Definition 1. Given ε and p, let x be an estimate of n.
x is “safe” to use iff:

• p ∈ [0.515n , 1.04n] =⇒ x ∈ [(1− ε)n, (1 + ε)n];

• p < 0.515
n =⇒ (1− p)x > 0.55;

• p > 1.04
n =⇒ (1− p)x < 0.45.

Intuitively, when the tag participating probability p
falls inside a proper range of [0.515n , 1.04n], the returned
estimate x should provide the expected estimation qual-
ity. This is characterized by the statement 1 in the
definition. However, CR may be invoked with bad value
of p, for example, when p is too small, too few tags
respond, and the fraction of empty slots (1−p)n will be
too big, affecting the estimation quality of x. However,
the returned estimate x will not cause false negative, if

the fraction of empty slots calculated based on x is also
big enough to distinguish this case (as characterized by
the statement 2). Hence, the value of x itself can safely
advise that x should not be used as an estimate.

Theorem 2. Given ε < 0.25 and K, CR returns an
estimate x such that Pr[x is safe] ≥ 1− 9

8 × (1
9)K and

it incurs O(y+ K
ε2) overhead, where y is the number of

erroneous slots encountered by CR during its execution.

To prove Theorem 2, we first introduce a Lemma that
characterizes the property of a single R-Trial.

Lemma 3. Consider an R-Trial and a target false
negative rate of r. Let x be the estimate of n based on
its execution, f be the error fraction in all of its slots,
and f ′ be the error fraction in its error-catching slots.
An R-Trial can ensure:

• f < 1
9 =⇒ Pr[x is safe] ≥ 1− r;

• f > 1
7 =⇒ Pr[f ′ > 1

8] ≥ 1− r.

• f ∈ [19 ,
1
7] =⇒ Pr[x is safe ∨ f ′ > 1

8] ≥ 1− r;

while incurring O(1
ε2 log(1

r)) overhead.

Intuitively, this Lemma shows that when the actual
error fraction f is low, with high probability the returned
estimate from an R-Trial is safe to use, hence the RFID
counting process can make progress. When the actual
error fraction is high, no estimate should be returned and
this will be indicated by the increased error fraction f ′

in the error-catching slots with high probability. In the
third case when f falls inside the two thresholds, the
probability that an unsafe x is returned and yet the f ′

does not indicate that risk is bounded by r. The Lemma
also shows that an R-Trial incurs an O(1

ε2 log(1
r)) of

overhead in order to ensure so.

Proof Sketch of Theorem 2. By Lemma 3, one can find
an l = O(1

ε2) such that for any i = 1, 2, . . . , an R-Trial
of length i× l satisfies the three statements in Lemma 3
for ri = (1

9)i. CR sets l to that value.

Since CR examines all slots as a single R-Trial (line
4), the first trial it examines has a length of K × l. By
CR’s logic (line 5), it is easy to see that CR returns
an unsafe result x in this loop only if the x value
estimated from that R-Trial is unsafe and at the same
time f ′ ≤ 1

8 . Hence, by Lemma 3, regardless of the
channel condition (as reflected by f), if CR returns an
x here, Pr[x is safe] ≥ 1− rK > 1− 9

8 × (1
9)K . If CR

does not return in the first loop, it examines an R-Trial
with length of (K+1)× l in the second loop. Again, by
Lemma 3, if CR returns an x at this loop, the false neg-

5

ative rate for this trial is bounded by rK+1 = (1
9)K+1.

Taking a union bound of both cases (i.e., returning at
first loop and returning at the second loop), we still
have: Pr[x is safe] ≥ 1− rK − rK+1 > 1− 9

8 × (1
9)K .

Following the same argument, regardless of how many
loops CR incurs before it returns an x, the overall false
negative rate is bounded by

∑∞
i=K ri = 9

8×(1
9)K , hence

Pr[x is safe] ≥ 1− 9
8 × (1

9)K .

We now show that CR’s overhead is O(y+ K
ε2). With

a global variable K, CR incurs K × l slots even when
there is no communication error. Since l = O(1

ε2) (see
above), this translates to an O(Kε2) overhead. Suppose
CR stops on the ith loop, where i > 1. the condition at
line 5 of Algorithm 1 must hold for the i−1th iteration.
Hence, y

(i−1)× l
5

> 1
8 . Hence, the total number of slots

CR uses, i.e., i×l = O(y). Combining these two results,
the overhead of CR is O(y + K

ε2).

IV. ROBUST RFID COUNTING (RRC) PROTOCOL

A key observation of our work is that one can simply
incorporate the building block CR into an existing non-
robust RFID protocol and transform the latter into a ro-
bust protocol. It is quite interesting since our transforma-
tion shows that one can make an RFID counting protocol
robust while retaining all the good properties the non-
robust protocol has — including strong guarantees on
estimation quality, high efficiency, and design simplicity.

A. SRC: a Simple Non-robust Protocol

We first briefly describe SRC, a simple non-robust
RFID counting protocol from [19]2. SRC consists of two
phases. Its first phase generates a rough estimate, based
on which its second phase outputs the final estimate.

To bound the overhead of its first phase at
O(log log n), SRC calls a revised PET protocol. The
original PET protocol [17] generates an estimate of n
by conducting a sequence of independent trials. In one
trial, each tag randomly chooses a positive integer u
with probability of (1

2)u. Given an upper bound x on
n, PET conducts a binary search over [1, log x] to find
the largest value of u that has been chosen by at least
one tag. Intuitively, with more tags, that value increases
monotonically on expectation. Hence, one can base on
that value to estimate n. If the upper bound x is within
a constant polynomial of n, PET’s binary search incurs
O(log log x) = O(log log n) overhead in each trial.

2The protocol is called SRCS in [19].

Since SRC only needs to get a rough estimate in its first
phase, it uses a constant number of PET trials. To release
the assumption that a good upper bound x is given in
advance, [19] uses some extra “bound-searching” slots
before PET. Specifically, in the ith bound-searching slot,
tags with u ≥ 2i−1 respond. The bound-searching stops
on the first slot that is empty. Denote that slot’s index
by m. The original PET’s binary search will be invoked
over [1, 2m−1]. It is easy to show that on expectation
m = O(log log n). Hence, the revised PET still incurs
an overhead of O(log log n).

After that, the second phase of SRC conducts a single
Balls-into-Bins trial consisting of O(1

ε2) slots, where
each tag participates by independently choosing a slot
in the trial and responding with a probability p. Here,
the rough estimate ñ from the first phase is used to
decide the value of p so that the expected number of
responding tags is in the same order as the length of the
trial. Hence, the outcome of the trial will show a healthy
mixture of empty and occupied slots. The second phase
of SRC then uses the fraction of empty slot in the trial
to calculate the final estimate of n, which provides the
(ε, δ) guarantee on the estimation quality.

B. Transforming SRC to RRC using CR

SRC uses multiple randomized trials in order to obtain
its final results, and its estimation quality guarantee is
based on the assumption that all of these trials are
executed without experiencing any communication error.
If communication errors affect the outcomes of some
trials, those trials lose their original stochastic properties,
which in turn leads to the ultimate loss of the end-to-end
guarantee of the SRC protocol.

Having CR as a convenient building block, we can
replace SRC’s non-robust trials with CRs to construct
a Robust RFID Counting (RRC) protocol. Algorithm 2
and Algorithm 3 together provide the pseudo code for
our RRC protocol. If we ignore the difference in their
building blocks, RRC follows similar design of SRC: It
consists of two phases. The first phase is to find ñ, a
rough (1

3 ,
9
64) estimate of n. If ñ ∈ [2n3 ,

4n
3], the second

phase can return an (ε, 3
16) estimate n̂. Since 9

64 + 3
16 <

1
3 , by applying union bound over the two phases, we can
see that n̂ is an (ε, 13) estimate of n.

Same as SRC, RRC’s first phase starts with a “bound-
searching” stage (line 3 - 6 in Algorithm 2), until the
identified upper bound x happens to be a good rough
estimate of n (line 7 - 8) or x > n (line 9). In the
latter case, a binary search like PET (Algorithm 3) is

6

Algorithm 2 RRC (Robust RFID Counting) Protocol
// First phase:

1: K ← 1; i← 1;
2: while value of ñ unassigned do
3: p← (2

3)i;
4: x← CR(p, 1

3);
5: if (1− p)x < 0.45 then
6: i← i× 2;
7: else if (1− p)x ∈ [0.45, 0.55] then
8: ñ← x;
9: else

10: ñ← Binary-Search(i2 , i);
11: end if
12: end while

// Second phase:
13: reset K ← 1;
14: n̂← CR(0.69/ñ, ε);
15: return n̂;

conducted to find the rough estimate (line 10). Note
that to replace all the trials invoked in the first phase,
CR needs to be invoked multiple times (both during the
bound-searching and the binary-search stage). Since the
value of K is initialized in the beginning of the first
phase and it is not reset until the second phase, the
converging property of CR (as formalized in Theorem 2)
nicely guarantees that all the first phase CR invocations
together incur a bounded probability of having a false
negative (i.e., returning an “unsafe” result).

After the rough estimate ñ is found, the second phase
of RRC simply replaces SRC’s Balls-into-Bins trial
with a CR. We reset the value of K here since RRC
reserves separate false negative budget for the second
phase. For the communication-error-free case, RRC fur-
ther improves its efficiency using an early termination
technique. Specifically, RRC outputs n̂ immediately after
it examines l′ information slots, if its error-catching slots
catch no error at that moment. Here l′ is the number of
information slots needed to provide an (ε, 3

16) estimate
as in the second phase of the original SRC protocol.

C. RRC’s Formal Guarantees

Theorem 4 formalizes the RRC protocol’s guarantee.

Theorem 4. For ε < 0.25, RRC outputs an (ε, 13)
estimate of n and incurs O(Y + 1

ε2 + (log log n)2)
overhead, where Y is the number of erroneous slots
experienced by RRC during its execution.

Proof Sketch of Theorem 4. We first prove RRC’s
estimation quality guarantee under the condition that all

Algorithm 3 Binary-Search(low, high)
1: while true do
2: m← low+high

2 ;
3: x← CR((2

3)m, 13);
4: if (1− (2

3)m)x ∈ [0.45, 0.55]∨ low ≥ high then
5: return x;
6: else if (1− (2

3)m)x < 0.45 then
7: low ← m+ 1;
8: else
9: high← m− 1;

10: end if
11: end while

results from the CRs are safe. Since 0.515
n < 2

3 ×
1.04
n ,

there must exist some i∗ such that (2
3)i

∗ ∈ [0.515n , 1.04n].
Given that all CRs invoked by RRC return safe results,
based on Definition 1 and RRC’s pseudo code, the first
phase of RRC will assign the value of ñ using the x
returned by an CR invoked with p = (2

3)i
∗
. By Definition

1 and Theorem 2, ñ ∈ [2n3 ,
4n
3]. Hence the p = 0.69

ñ
value used in the second phase (line 14 in Algorithm 2)
satisfies p ∈ [0.515n , 1.04n]. By statement 1 in Definition
1, the final output n̂ ∈ [(1− ε)n, (1 + ε)n].

Now we analyze the overall false negative rate that
any of the CRs may return an unsafe result. For the first
phase, applying Theorem 2 and union bounds, the overall
false negative rate is bounded by

∑∞
i=1

9
8 × (1

9)i ≤ 9
8 ×

1
9

1− 1
9

= 9
64 . For the second phase, the false negative rate

is bounded by 9
8 ×

1
9 = 1

8 . With early termination, false
negative rate of the second phase is still bounded by 3

16 .
Since 9

64 + 3
16 < 1

3 , by union bound, the overall false
negative rate across both phases is bounded by 1

3 . Hence,
n̂ ∈ [(1 − ε)n, (1 + ε)n] holds with probability greater
than 1− 1

3 .

Now we analyze the overhead. For the first phase,
following the same proof as SRC [19], on expectation,
there will be m = O(log log n) CR invocations. Note
that we are pursuing a rough estimate with ε = 1

3 here.
Hence, by Theorem 2, the ith invocation of CR incurs
an overhead of O(yi + i). All CRs invoked in the first
phase hence incur an expected overhead of

∑m
i=1O(yi+

i) = O(Yphase 1 +
∑m
i=1 i). Since m = O(log log n), this

translates to an overhead of O(Yphase 1 + (log logn)2).
For the second phase, since it only invokes CR once with
K = 1, by a direct application of Theorem 2, the second
phase overhead is O(Yphase 2 + 1

ε2). Hence, the overall
overhead of RRC is O(Y + 1

ε2 +(log log n)2), where Y =
Yphase 1 + Yphase 2 is the total number of communication
errors encountered by RRC.

7

V. EVALUATION

We conduct simulations to study the robustness, esti-
mation quality guarantees, and efficiency of RRC proto-
col under different communication error settings. Table I
lists some settings that we evaluate. Based on EPCglobal
C1G2 standard [4], each RFID counting slot is 0.4ms
long. For experiments presented in this Section, there
are n = 50000 tags and we consider an (ε, δ) estimation
quality requirement with a constant δ = 1

3 . We also
conduct experiments with other values of n and δ, and
observe consistent results under all of these settings.

Robustness and estimation quality guarantee. Our
formal analysis proves the robustness and estimation
quality guarantee of RRC, which we demonstrate here
by examining the estimation quality provided by RRC
over various types of error settings. We have tested
RRC’s robustness in more than a dozen of different
error settings, where we vary the types of errors — 1
errors, 0 errors, or a mixture of them; the way they
distribute over time — uniform, bursty, and settings with
an increasing fraction of errors happening in the first
phase. We also try different combinations of them.

Under all of these settings, RRC always provides
the promised (ε, 13) error estimation quality. Figure 1
illustrates RRC’s robustness by presenting its behaviour
under the settings 1-3 in Table I. Here the target estima-
tion quality is ε = 3%. As shown in the Figure, RRC’s
actual estimation error never exceeds that threshold in
all settings, regardless of the number of errors. RRC
achieves this strong guarantee, thanks to the convergence
of the overall false negative rate as provided by the CR
building block. Though not shown in the Figure, we also
evaluate the settings 5-8 in Table I where an increasing
number of errors are diverted to the first phase of RRC.
Since the first phase needs to invoke CR multiple times,
the false negative in any invocation can make all the rest
invocations meaningless. Even in these settings, RRC
delivers its guaranteed estimation quality.

As a comparison, we also evaluate the actual esti-
mation quality provided by other existing RFID pro-
tocols under the same settings. Only a few recent
protocols [18], [15], [7] explicitly consider the impact
of communication errors. We evaluate ZOE [18] in
our experiment, since ZOE’s model conforms with the
standard RFID counting model (see Section II)3. ZOE
explicitly deals with communication errors, but it makes

3[7] assumes that the protocol can use additional physical layer
information, and [15] considers tag-specific channel condition.

Channel error type Distribution pattern
Setting 1 100% 1 Uniformly distributed

Setting 2 100% 1 Bursty

Setting 3 100% 0 Bursty

Setting 4 50% 1 , 50% 0 Bursty

Setting 5 100% 1 25% phase 1

Setting 6 100% 1 50% phase 1

Setting 7 100% 1 75% phase 1

Setting 8 100% 1 100% phase 1

TABLE I: Selected communication error settings

an implicit assumption that the error rate remains stable
over its execution. To avoid any unfair comparison with
RRC, we prepend ZOE with 100% extra free slots to
estimate the channel error rate before it gets started.
In addition to ZOE, we also compare with the SRC
protocol [19]. As described in Section IV-A, SRC incurs
the lowest overhead among existing RFID protocols, but
it is designed without considering communication error.

As shown in Figure 1, for all the three settings
presented, SRC loses its estimation quality guarantee
rapidly when the number of communication errors in-
creases. This is not surprising since SRC is not designed
with robustness in mind. Also as expected, ZOE works
reasonably well in setting 1, where the channel errors
distribute uniformly over time. However, it performs as
bad as the non-robust SRC when the channel error rate
varies over time (setting 2 and 3). In particular, both pro-
tocols lose their guarantees on estimation quality when
operating over time-varying channels. For example, with
2000 bursty 0 slots (setting 3), the results from both of
them have more than 60% of relative estimation error,
which is 20 times worse than what they claim to provide
(i.e., the target error of ε = 3%).

Efficiency of RRC. In all the settings we evaluated, the
overhead of RRC increases linearly with the number
of communication errors it encounters. For example,
RRC’s overhead increases by around 10 seconds if it
encounters 2500 communication errors and increases by
around 20 seconds if it encounters 5000 errors. This
confirms our analysis that asymptotically RRC provides
near-optimal overhead of O(Y + 1

ε2 +(log log n)2), where
Y is the number of communication errors encountered
by RRC. Note that, if the fraction of error slots always
remains above the level RRC can tolerate, RRC may not
terminate. In this case, both Y and the RRC’s overhead
become unbounded.

As another indicator of RRC’s efficiency, we also look
at its overhead when the channel is error-free. In this

8

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1000 2000 3000 4000 5000

a
c
tu

a
l
e
s
ti
m

a
te

 e
rr

o
r

ε

of erroneous slots

ZOE

SRC

RRC

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 500 1000 1500 2000 2500

a
c
tu

a
l
e
s
ti
m

a
te

 e
rr

o
r

ε

of erroneous slots

ZOE

SRC

RRC

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1000 2000 3000 4000 5000

a
c
tu

a
l
e
s
ti
m

a
te

 e
rr

o
r

ε

of erroneous slots

ZOE

SRC

RRC

(a) Setting 1. (b) Setting 2. (c) Setting 3.

Fig. 1: Actual estimation error ε obtained by different protocols under different communication error settings.

setting, RRC uses less than 2 seconds to provide an
estimate with ε = 3% estimation quality. In comparison,
even the most efficient non-robust protocol, i.e., the SRC
protocol, requires around 1.5 second to achieve the same
estimation quality. RRC only incurs small increase of
overhead when the channel is error-free. Asymptotically,
while RRC’s first phase incurs O((log log n)2) overhead,
which is greater than the O(log log n) overhead at SRC’s
first phase, the overhead of its second phase remains at
O(1

ε2) as SRC. Since O(1
ε2) dominates O((log logn)2)

(unless n approaches the astronomically large number
of 10120), SRC and RRC’s overall overheads are in
the same order of O(1

ε2) in a communication-error-free
setting.

VI. CONCLUSION

In this paper, we study the RFID counting problem
over time-varying channels. We propose a novel building
block called Converging Retries (CR), and use CR to
design a Robust RFID Counting (RRC) protocol, which
provides strong formal properties, including robustness
against time-varying error rates, asymptotically near-
optimal efficiency, and guarantees on estimation quality.

ACKNOWLEDGMENT

The work and presentation are partly supported by the
research grant for the Human-Centered Cyber-physical
Systems Programme at the Advanced Digital Sciences
Center from Singapore’s Agency for Science, Tech-
nology and Research (A*STAR), and partly supported
by the National Research Foundation, Prime Minister’s
Office, Singapore under its Campus for Research Ex-
cellence and Technological Enterprise (CREATE) pro-
gramme. This work was partly done when Ziling Zhou
was a research intern at Advanced Digital Sciences Cen-
ter. We thank Prof. Haifeng Yu from National University
of Singapore for his insightful inputs to the paper.

REFERENCES

[1] http://www.rfidjournal.com/internet-of-things.
[2] A. Bekkali, S. Zou, A. Kadri, and R. Penty. Performance analysis

of passive uhf rfid systems under cascaded fading channels and
interference effects. IEEE Transactions on Wireless Communi-
cations, 14(3), March 2015.

[3] B. Chen, Z. Zhou, Y. Zhao, and H. Yu. Efficient Error Estimating
Coding: Feasibility and Applications. IEEE/ACM Transactions
on Networking (ToN), 20(1):29–44, February 2012.

[4] EPCglobal. EPC Radio-Frequency Identity Protocols Class-1
Generation-2 UHF RFID Protocol for Communications at 860
MHz - 960 MHz Version 1.2.0. 2008.

[5] H. Han, B. Sheng, Chiu C. Tan, Q. Li, W. Mao, and S. Lu.
Counting RFID tags efficiently and anonymously. In INFOCOM,
2010.

[6] F. Hlawatsch and G. Matz. Wireless Communications Over
Rapidly Time-Varying Channels. Academic Press, 2011.

[7] Y. Hou, J. Ou, Y. Zheng, and M. Li. PLACE: Physical layer
cardinality estimation for large-scale rfid systems. In INFOCOM,
2015.

[8] M. Kodialam and T. Nandagopal. Fast and reliable estimation
schemes in RFID systems. In MobiCom, 2006.

[9] M. Kodialam, T. Nandagopal, and W. C. Lau. Anonymous
tracking using RFID tags. In INFOCOM, 2007.

[10] J. Mitsugi. UHF Band RFID Readability and Fading Measure-
ments in Practical Propagation Environment, Auto-ID Labs White
Paper, 2005.

[11] E. Newcombe and S. Pasupathy. Error rate monitoring for digital
communications. Proceedings of the IEEE, 70(8):805–828, 1982.

[12] C. Qian, H. Ngan, Y. Liu, and L. Ni. Cardinality estimation for
large-scale RFID systems. IEEE Transactions on Parallel and
Distributed Systems, 22(9):1441–1454, September 2011.

[13] M. Shahzad and Alex X. Liu. Every bit counts - fast and scalable
RFID estimation. In MobiCom, 2012.

[14] B. Sheng, C. Tan, Q. Li, and W. Mao. Finding popular categories
for RFID tags. In MobiHoc, 2008.

[15] W. Sze, Y. Deng, W. Lau, M. Kodialam, T. Nandagopal, and
O. Yue. Channel-oblivious counting algorithms for large-scale
rfid systems. IEEE Transactions on Parallel and Distributed
Systems, 26(12):3303 – 3316, December 2015.

[16] J. Wang, H. Hassanieh, D. Katabi, and P. Indyk. Efficient and
reliable low-power backscatter networks. In SIGCOMM, 2012.

[17] Y. Zheng and M. Li. PET: Probabilistic estimating tree for large-
scale RFID estimation. IEEE Transactions on Mobile Computing,
11(11):1763–1774, November 2012.

[18] Y. Zheng and M. Li. ZOE: Fast cardinality estimation for large-
scale rfid systems. In INFOCOM, 2013.

[19] Z. Zhou, B. Chen, and H. Yu. Understanding RFID Counting
Protocols. IEEE/ACM Transactions on Networking (ToN),
24(1):312–327, February 2016.

9

